Lecture Notes for the Course

Object Oriented Software
Development for Control
Engineering and Signal Processing
Applications

Dr.—Ing. Heiko Hengen

Lehrstuhl fiir Regelungstechnik und Signaltheorie

==

Fachbereich Elektrotechnik und Informationstechnik
Universitat Kaiserslautern

u
I m UNIVERSITAT
m KAISERSLAUTERN

Kaiserslautern, January 2001

Contents

1 Introduction 7
1.1 Structure of problems considered in this course 7
1.2 Aimofthecourse. 9
1.3 Basic Knowledge required 0. 9

2 Languages and systems 11
2.1 Programming Languages e 11
2.2 Operating Systemo L 11
2.3 Platforms 12
2.4 User Interface Issues 0oL 13

3 Techniques of modeling software systems 15
3.1 Dimensions of system modeling 15
3.2 Flow diagrams and Petri Nets 15
3.3 Object Oriented Development, 19

3.3.1 Classes 21
3.3.2 Object orientationo 21
3.3.3 Object oriented Entity-Block Diagrams 23
3.3.4 Relation of C++-classes to entity block-diagrams 26
3.3.5 Building up a Metasystem 31
3.3.6 Inheritance and Overriding 34
3.3.7 Encapsulation. oo 39
3.3.8 Too much object-orientation 40

3.3.9 Rapid Prototyping and Object oriented replacement for Interpreters 42

4 Hierarchical Class Design 47
4.1 Building a generic basisclasso o Lo 47
4.2 Building more specified classes L L 0oL 48
4.3 TimeiSsues o v v i e e 51
4.4 Hardware in the loop simulation 54
4.5 Transfer of structures for different platforms o7

5 Elements of complex systems 59
5.1 Dynamic lists s 59

5.1.1 Construction of a dynamic list 59
5.2 Serialization and Reconstruction of blocks 63
5.2.1 Dynamic Data Handling and Data Exchange 65

6 User Interfaces

6.1 The Basis of a user interface
6.2 Classical programming,

6.2.1 A text-based interface

6.2.2 A graphical user interface
6.3 The object oriented user interface concept

6.3.1

6.3.2 Setting up the entities
6.4 Message-Passing and Message-Filtering

6.5 User Interface Design with QT

7 A control loop simulator

7.1 System theoretic approach
7.2 Modeling and object oriented entitys

7.2.1 The basic unstructured operator block
7.2.2 The Signal source
7.2.3 The Signal sink (Oscilloscope)
7.2.4 The PID controller
7.2.5 The Plant model
726 Thesumpoint
7.2.7 Meta System Construction

7.3 The User Interface

7.4 Extensions for the fully dynamical case.

8 Realtime systems and Multitasking
8.1 The necessity of Realtime
8.2 Provision of real time in practice
8.3 Multitasking

8.3.1 Cooperative Multitasking

8.3.2 Preemtive Multi tasking

8.4 Approach using embedded Systems or Network Connections

9 Application Testing
9.1 Aspects of Testing Systems
9.2 Building up systems for Simulation purposes

9.2.1 Dynamic model of the tank
9.3 Single system solution 0000
9.3.1 Simulation of the plant

9.3.1.1
9.3.1.2

9.4 Solution using two systems

10 User Requirements and Design Document
10.1 Acquiring Information and User Requirements

10.2 Setting up the design document

The main application entity - message handling

Timer and Plant Dynamics
Visualization layer
9.3.2 Connection of Controller and Plant

CONTENTS

CONTENTS 5

A Petri Nets 163
A.1 Dynamical View of a Petrinet 164
A.2 Struktural proprties 165

A.2.0.1 Reachability, 165

A21 Deadlocks 166

A.3 Algebraic View on Petri Nets 166
A.4 Interpretation of Petri Nets 169
A.4.1 Interpretation for process control applications 169
A.4.2 Interpretation as flow diagrams 170

B Development Excercises 171

B.1 Object oriented programming L. 171
B.1.1 A simpleexample 171
B.1.2 Anobject oriented list L. 171

B.2 Userinterfaces 172
B.2.1 Some buttons, signalsand slots 172
B.2.2 A dynamical visualization screen (oscilloscope) 172

B.3 Hardware interface - a Frame Grabber Driver 173
B.3.1 Interface description and design 173
B.3.2 Frame Grabber Image Acquisition Application 183

B.4 Control system operator blocks 184
B.4.1 Imtegratoro 184
B.4.2 Differentiatoro o 184
B.4.3 Summation Pointo 184
B.4.4 Scope e 184
B.4.5 Graphical Input for the given blocks 185

B.5 A Metasystem for a control loop 186
B.5.1 An execution structure for the control blocks 186
B.5.2 A hard wired control loop simulator 186

B.5.2.1 Simplecaseo o oo 186
B.5.2.2 Generalcase 186

B.6 Realtimeissues 187
B.6.1 Set and reset parallel port signals 187
B.6.2 Data acquisition from an A/D-board 187
B.6.3 Coupling Realtime and User Interface 187

B.7 Application Testing 188
B.7.1 Separate Entities L o000 188
B.7.2 Object oriented way of combing Entities 188
B.7.3 Testing with hardware-cabling 188

C Solutions to selected Problems 199
C.1 A Framegrabber-Interface 199

D Sampled Data Systems 205
D.1 Numerical integration algorithms 205

D.1.1 Explicit Euler Integration 205

D.1.2 Numerical Intergration using the Heun Method 206

6 CONTENTS

D.2 Discretization of continuous time control algorithms 209
D.2.1 Digital PI- Controller 209
D.2.2 Digital PD Controller 210
D.2.3 Digital PID Algorithm 211
D.2.4 Tustin-Transformation 212

D.3 Sampled data systems in state spaceo 213

E Case Study 219

Chapter 1

Introduction

1.1 Structure of problems considered in this course

A very common setting in a pure control system engineering problem is a plant
with a number of terminals (analog 1/O). Depending on the speed of the actual
plant, one has to select the interface in between plant and IPC. The general
informational setup of a basic control problem is given in Fig. 1.1.

System/Plant

y(t) u(t)

Controller

w(t)

Higher Process Control System \

Figure 1.1: Informational Structure of a control system problem

In case the overall process control system is already included in the CPU on which
the controller is run, then the system can be represented as given in Fig. 1.2

It is also necessary to classify the problem hierarchically according to the struc-
tures found in the environment of the process. In general, process management
can be represented as a layer model.

The given Model shows that it is necessary to take different levels of information
into account. Devices for direct process control most often have to be designed
for serving process information to higher level control devices. (This is beyond
the scope of this course and will not be dealt with in detail).

7

8 CHAPTER 1. INTRODUCTION

System/Plant

y(t) Controller u(t)
+

Process Management system

/ N\

Figure 1.2: Informational Structure of a control system problem with included
process management system

condensed
process information

AN

/ Process Control Layer \
/ Field Layer \

Figure 1.3: An informal layer model for automization

many signals

In this course, the focus is set on control-specific design including
e Rapid prototyping issues
e user interfacing

e a concise concept of building up software packages according to modern
standards

1.2. AIM OF THE COURSE 9

e real time issues

e avoiding interpretative structures using object oriented techniques

1.2 Aim of the course

The aim of this course is to teach concepts used in the development of soft-
ware systems used for control applications. The prejudice that engineering and
programming do not belong together most often leads to problems in the imple-
mentation stage. Neglecting programming issues is, at least in our days as bad as
starting any technical project without prior planning - e.g. designing a controller
without using any mathematics.

1.3 Basic Knowledge required

For successful understanding and application of the concepts given in this course,
it is advantageous to

e be familiar with a programming language
e have basic control engineering capabilities

e have a basic understanding of systems and modeling of systems

10

CHAPTER 1.

INTRODUCTION

Chapter 2

An overview of programming
languages, techniques and
operating systems

2.1 Programming Languages

The following course will not focus on a special language, although the examples
will be done using object oriented C++; there are of course many other possi-
bilities, such as object oriented Pascal (Delphi); the given concepts can be even
realized using any assembly language. C++ has been selected as it provides a
good compromise between speed and programming effort: in many systems com-
putational power is not the limiting parameter whereas time of development is
very costly. This course gives a structural approach.

2.2 Operating System

Today, a big variety of operating systems can be found. Not all of them are meant
for industrial automation although they are sometimes used for automation is-
sues.

The question of which operating system one has to use cannot be decided a priori
easily. The reason for this is that people use what they know and also use systems
for which company-support is granted. If you choose an operating system, choose
it according to the requirements of the application. Take also into consideration,
that old operating systems are of no use if an open and extensible system struc-
ture has to be built up.

Concerning realtime requirements, one has to be aware of the lack of realtime
capabilities in many widely used office-application operating systems. If the ap-
plication has to be realized on such a platform, it is necessary to ensure realtime
capabilities using either realtime extensions (which may not grant hard realtime)

11

12 CHAPTER 2. LANGUAGES AND SYSTEMS

or to add an additional hardware layer (known as “embedded system”).

The two competitors which offer a graphical user interface and are up to date
according to their architecture are Windows and Linux.

Although Linux is not yet widely used as far as industrial applications are con-
cerned, it becomes more and more common and also has good realtime extensions.
Another advantage is its stability and the number of free compilers and exten-
sions which are most often distributed in the form of source code.

Dos Applications using multitasking environments such as RTKernel are also a
good choice if the necessary hardware-drivers and libraries are available.

The best choice is however to use multiplatform toolkits which allow the devel-
oper to cvhange the target-system without any adaptions concerning the program
code.

In this course, we choose Linux/C++ and use QT as an example for a multi-
platform visualization and User-Interface design toolkit. For realtime issues, we
choose RTLinux.

The design techniques can be easily transferred to other common platforms or
toolkits as well.

User Interface Layer Nonrealtime layer

Information and signal processing
layer (on IPC)

Redltime layer

Information and Signal processing
layer (on embedded System)

. Interface Layer . Hardware layer

Figure 2.1: User interface-interaction with realtime layers

2.3 Platforms

The choice of a platform for realization of e.g. a control algorithm is also an
important question, especially with regard to reliability issues and failure proba-
bilistic approaches.

In most cases, PLC- programs on PLC-systems are preferred to Industrial PC

2.4. USER INTERFACE ISSUES 13

(IPC) with embedded cards or even as standalone control devices.

In fact, PLC-systems are a good choice as far as they cover the requirements of
modern control systems.

At least for rapid prototyping applications, the IPC is a good choice. Concerning
flexibility and the possibility to test modern control algorithms, the IPC plays an
important role.

2.4 User Interface Issues

A user interface is also part of the concept of a control engineering or signal
processing software application just as well as a pressure gauge is part of an in-
dustrial valve. Building a user interface is not a highly scientific task but one has
to take into account that without an appropriate user-interface-layer, a system
for rapid prototyping and industrial control would neither be accepted nor be
easy to handle.

For building up user-interfaces, many user-interface kits (class or function libraries
respectively) are available. Most of todays user interfaces are graphical. The
user-interface libraries can be described according to their underlying structural
concept and their abilities as follows:

1. Object oriented (e.g. QT, GTK)
2. Flow-oriented (e.g. Motif)

3. Platform oriented or available for different Platforms (e.g. Linux and Win-
dows)

14

CHAPTER 2. LANGUAGES AND SYSTEMS

Chapter 3

Techniques of modeling software
systems

3.1 Dimensions of system modeling

In general, two types' of system models can be distinguished:

1. Behaviouristic models, giving the specified or actual system-behaviour at
the inputs/outputs of the system

2. structural models, these models specify the structure of a system

3.2 Flow diagrams and Petri Nets

The relation between Flow diagrams and Petri Nets will be elaborated using a
simple example; the task is specified as follows: “If the ambient light intensity
reduces under a certain level, then switch on a bulb, if the intensity of the ambient
light is above a certain level, switch off the light. Assume, that I sends out a
signal if light intensity > a and I; sends out a signal if light intensity < f.

PLCIPC [----------- ——

Figure 3.1: Setup with light intensity sensors and bulb

ILitz [9] for example distinguishes three type of models in a more general scope of system
modeling

15

16 CHAPTER 3. TECHNIQUES OF MODELING SOFTWARE SYSTEMS

Measurement Lighting system

Control y
) system

Error e

indicator

Figure 3.2: Informational structure of the setup given in Fig. 3.1

The given behavioural specification has to be formalized to obtain an algorithm.
To ensure good extensibility, the algorithm has to be transparent.

START

y=0,e=0 Light off, no error

(I5.1,)
00 | (1,0 | (01 | (1,2

y=le=0 | Lignton, y=le=1 | Lighton,
no error error

00 | 01 | (Lo | (11

Figure 3.3: Setup with light intensity sensors and bulb

The algorithm given in Fig. 3.3 could be either used to write a program or to
design a finite state machine of Moore-type. Alternatively one could use the fol-

3.2. FLOW DIAGRAMS AND PETRI NETS 17

lowing Petri net? to make a model of the system’s desired behaviour:

From basic informatics, one knows the flow diagram for program routines. The
flow diagram gives an overview of causality and - in general - shows under which
conditions (system inputs) which parts of the program are executed. In order to
predetermine timings in certain situations, flow diagrams can be used.

Although flow diagrams are widely used, we will use a special method of model-
ing processes in process control - the so called Petri nets. The advantage of Petri
nets over flow diagrams is that they make concurrencies obvious and thus are
a more transparent way of behavioural process analysis and controller synthesis
than flow diagrams.

However, one dimension along which it is necessary to analyse or synthesize a
program (an algorithm) is time.

The second dimension which one has to take care of is the structure of the de-
signed program.

Talking about the structure includes questions like reusability of code, methods
for synthesis, validation, etc. A program which is operational and fulfills its tasks
within a timeframe might as well be built up in a very unstructured way. The
reverse is also possible, - e.g. that a program is well structured with reusable
code but not fulfilling realtime requirements.

The optimal solution is of course a program which suits both the requirements:
suitable timing and structural clarity as well as reusability of code.

Petri nets are well suited to show concurrencies in processes. Take for example
a drilling process. Consider the following requirements for a part of a drilling
process: switch on drill engine, then lower the drill quickly. In the vicinity of the
metal, slow down the axial movement of the drill, drill into the metal, after the
hole is complete, move the drill upwards in axial direction and switch off the drill
engine.

In the interpreted Petri net of figure 3.5, we notice that outputs towards the
process are connected with the places and inputs to the (logic) controller are
used to determine the switching of the transitions (this is called “control oriented
interpretation” according to Litz [7]).

Obviously the states of the Petri net are given by all the tokens in the different
places of the net.

It is also possible to set up models for events and series of events using Petri nets.

2Petri net see Appendix A

18 CHAPTER 3. TECHNIQUES OF MODELING SOFTWARE SYSTEMS

(0,0 1,1)

(0.0)

1.1)

0.1)

O (y,©) Output of control system T (1.0)
s (I;,!,) Inputsto control system

Figure 3.4: A behaviouristic Petri Net for visualization of the control algorithm

Start button pressed

lower drill
quickly

metal piece reached

lower drill
slowly

hole complete

retract drill

!

+ upper end position reached

Figure 3.5: A Petri net for a part of a drilling process (control oriented interpre-
tation)

This is especially useful if behaviouristic models of communicating entities are
set up.

3.3. OBJECT ORIENTED DEVELOPMENT 19

As far as Petri nets are concerned, one frequently encounters different kinds in
literature (see Wendt [17] or Schnieder [14]). The reason for this diversity is the
different interpretations of the elements of the net.

Start reading

T

O

Y

Stop Reading

Figure 3.6: A Petri net can be considered as a means of visualization of flows,
in this case the time consumption of one step in the flow is described by the 7
at the post arc of the transition. Each step contains a beginning and an ending
transition and the arcs in between represent the time consumption of the step.

One often encounters Petri nets as a modern type of flow diagram. To become
familiar with this modern and transparent type of tool for system analysis and
design, we will also use this means during the course®. A Petri net interpreted as
a flow diagram is shown in Fig. 3.6.

3.3 Object Oriented Development

Till now, we were discussing the modeling of algorithmic behaviouristic aspects
of software systems. A Petri net for example does not give any hints about the
overall structure of a software system, it tells us about how certain algorithms

3See Litz [7], Wendt [17] and Schnieder [14] for a good overview of the application of Petri
nets as a means of system modeling in process control, digital system and with further extensions
also for analog system modeling

20 CHAPTER 3. TECHNIQUES OF MODELING SOFTWARE SYSTEMS

Read file

O

Y

Write File

Figure 3.7: A Petri net with another interpretation: every transition represents
the execution of a function (procedure) in a process

work. In a flow-oriented software , the flow-oriented modeling tools (e.g. flow
diagrams or Petri nets) contains all the necessary information of how an algo-
rithm works and how it can be implemented by conversion of the flow diagram
into code.

The object oriented approach contains in addition to flows a structural component
- but before we investigate the necessary tools, such as entity block-diagrams, we
first take a closer look at object orientation itself.

Object orientation is a frequently used term in modern software development -
one problem however is that is most often misinterpreted; object orientation is
a concept of how to build up a software system in an efficient and transparent way.

The design concept is to form classes of similar (real-world or software) objects
or processes and their handlers - entities that focus on the handling of a certain
process or object.

3.3. OBJECT ORIENTED DEVELOPMENT 21

3.3.1 Classes

A class is different from a set because in a set, you will find only selected Elements
of a unique type; e.g. consider the set

M=1{1,2,3,...,10} MCN (3.1)
with N the set of all natural numbers.
The set consits of elements which are sharply defined; e.g. if you think of trees
in a forest, then there is not a unique tree, some of the trees are of a different

shape but have certain features in common.

The class of trees contains

Cr = {oaktree, booktree, maple, . . ., } (3.2)

in the sense that a fuzziness comes into play. As per definition a class is non-sharp,
we can introduce hierarchies of specification:

non-sharp | Class of forests all elements which occur in a forest
Class of trees all kinds of trees
Class of oaks all kinds of oaks

sharp Class of red oaks | all oaks with 25 leaves
with 25 leaves

The extreme case of a class is again a set (if all features of the elements are fully
specified).

Forming classes makes it possible for us to find a complexity structure which
subdivides a problem into multiple layers of abstraction and specification.

3.3.2 Object orientation

In the previous section we specified a certain class of objects, objects of one class
can however be handled in a similar way and so it is sensible to introducte an
entity that has the duty to handle a certain class of objects.

Example: You are designing a system with a number of i/o-boards of the same
type that can be removed or inserted into the device.

22 CHAPTER 3. TECHNIQUES OF MODELING SOFTWARE SYSTEMS

Board1 Board 2

Bus—system

Connectors for i/o-Boards

Figure 3.8: I/O board devices

If you have to read or write data from the boards’ in- and outputs and you would
write a flow-oriented code, you first had to check for every board whether it is
at its place and then handle the board’s i/o which results in lots of if and case
commands and makes even a well structured program code intransparent.

It was much more efficient (for the system designer) if she/he had to integrate
only one entity which can be copied and then after the setup each entity handles
one i/o-board instead of many if-branches in a flow-oriented code. In fact, we
need a higher level entity which sets up the entities, one for every installed board.

In this context, we did not speak about the term class. If we consider the same
example a bit extended, we can find out why thinking in different abstraction
levels is very useful in the context of object orientation.

Example: Assume the same hardware setup as before with the change that 3
types of i/o-boards can be inserted. First, we should think aout what these
boards have in common.

If they have e.g. common identification or communication features, it is not nec-
essary to construct a new entity for every board-handler. We could just extend
a basic entity that gives a minimum functionality which is needed for the more
specified entities.

Now we already have two abstraction levels:
1. The generic i/o-board handler
2. The specific i/o-board handlers for board types 1,2,3

The selected approach already gives a hint, of which elements an entity must
consist and which featues it can have:

1. It should encapsulate a certain functionality, the same as our conventional
flow-oriented software has had.

2. It must be possible to inherit the features of a certain type of entity

3.3. OBJECT ORIENTED DEVELOPMENT 23

3. The entity must contain pieces of flow-oriented code as well as data-fields
for variables

To extend this map of features let us again go back to the previous example.

Example: Now we allow in addition to the three different i/o-boards also the
insertion of boards which are not i/o-boards. Thus we need the possibility to
replace certain features in our Entity (so called overriding).

The entities as mentioned previously, are created during run-time of the program;
they are built up according to a certain plan which is copied or instantiated in
memory.

To fulfill our needs, an entity has to contain:
e membership functions

e membership variables

3.3.3 Object oriented Entity-Block Diagrams

If software synthesis is performed according to an object oriented approach, we
also have to use models for such software-systems. The model for object oriented
structures is an Entity-Block diagram. An entity consists of storage (blocks of
memory) which is normally organized in member variables (members of the en-
tity) Further an entity contains a certain set of so called member functions which
operate on the memory or on a certain real world object which is handled by a
specific entity.

The predescribed entities exchange information via places which symbolize (in
the general case) memory.

How the data is transferred in reality is of no interest - through the places we
could either have real data-flow or they could symbolize message passing or even
pointer based memory access with a pointer to a certain block of memory in an-
other entity.

Entities are coupled using arcs and places. The arcs describe the data-flow direc-
tion in case of unidirectional flow or can also symbolize bidirectional flow (arcs
without arrows).

With an object oriented entity-diagram, one can visualize the structure of e.g. a
technical plant or a receipe as well as a software module.

To synthesize software structures (this is the second dimension of design of a
program), we have to put up some additional rules:

24 CHAPTER 3. TECHNIQUES OF MODELING SOFTWARE SYSTEMS

Class—Name : Entity—Name

Membership Function 1

Membership Function 2

Membership Function 3 ()

é\) O

Local Memory

Figure 3.9: An object oriented Entity-Block Diagram

Figure 3.10: Exchanging information

e One entity handles a specific object (real-world or software)

e the entity is connected to another entity using arcs and places as described
before

e Hardware components are modeled as entities as well

In addition to the structural approach described, the entity diagrams can be used

3.3. OBJECT ORIENTED DEVELOPMENT 25

8,

Arc

Uni—directional data flow

Bi—directional data flow

O

Figure 3.11: Directional Data Exchange between entities

Bi—directional data flow

as a tool for determining the complexity level of an entity. This we need for our
hierarchical approach to inheritance concepts.

The major difference between a Petri net and an entity block diagram is that the
Petri net visualizes actions, reactions and situations and not structures.

Using a combination of Petri nets and entity block-diagrams we can effectively

26 CHAPTER 3. TECHNIQUES OF MODELING SOFTWARE SYSTEMS

model all kinds of complicated software structures.

3.3.4 Relation of C++-classes to entity block-diagrams

A C++-class is generally speaking an extended type definition which contains
member functions as well as member-variables; this is exactly how we have de-
fined the construction of an entity.

The difference between an entity and a class is that a class only gives the plan
for how an entity is built up. The class thus defines the structure of an entity.

To realize an entity, a class is instanciated, i.e. an entity is built up according to
the definition of the class.

Example: We define the class i/o-Board:

class ioboard

{
//Construction and Destruction of the class
ioboard();
~ioboard();

//Initialization of Board
void initbrd();

//Member-Variables
int m_type; //Type of io-board
int m_buflen; //Length of buffer

This class is the plan of how to build up the entity i/o-board. To correctly build
up an entity and to initialize the entity appropriately, we need two special func-
tions which are invoked directly after instanciating the class and during deletion
of the entity: contructor and destructor respectively.

Using the given concepts leads to a structured approach to software design. One
aspect is however that the resulting code has to be ordered concerning execution.
The entity is like a musical instrument - the whole functionality is implemented
into the entity but it has to be used.

Directing commands, actions and reactions to the block structure of a software
consisting of different entities is the task of a higher level system : the so called
meta system. The need for a meta system will be illustrated in the following
example.

3.3. OBJECT ORIENTED DEVELOPMENT 27

Example: Assume the following setup (e.g. from the user requirement document);
A part of a processing plant, a tank with input and output valves and a mixer,
has to be controlled according to the following specification: “First open valve V;
and fill up the tank (without level-indicator, for a time of 7; = 5s, then stir the
contents of the tank for 50s and finally remove the tank’s contents by opening
valve V5.

N S

L

V2
Figure 3.12: A chemical reactor

For every physical object which can be controlled (logic control) we introduce an
entity:

With the given entities, we cannot realize the given task unless we use their
membership-functions.

To investigate this problem further, we will now take a closer look onto the flow-
oriented control algorithm.

The flow-oriented structure now has to be built up from the functionality in the
entities. The functions which realize the actions which are written next to the
transitions in Fig. 3.14, can be found sorted according to membership to the
given entities (see Fig. 3.13). This is the object-oriented concept - the member
functions which have to be invoked belong to a certain entity, to the entity which
takes care of the underlying physical object (m_V1 takes care of valve 1, m_V2 of

28 CHAPTER 3. TECHNIQUES OF MODELING SOFTWARE SYSTEMS
CVave: m V1 CEngine: m_Eng CVave: m V2
| Open Valve | EngineOn | Open Valve
| Close Valve | EngineOff | Close Valve |

X i X

Figure 3.13: Entities for handling the reactor’s components

Tank empty
Fill up Tank
Tank full
Stir
Let out fluid

Figure 3.14: A petrinet for the tank process (process oriented interpretation
according to Litz [7]

valve 2 and finally m_Eng of the stiring motor).

From this, it becomes clear that we need a higher level system which triggers the

3.3. OBJECT ORIENTED DEVELOPMENT

29

membership functions and uses the functionality provided by the entities.

)

N\

I

|\
CValve : m_V1 CEngine : m_Eng CValve : m_V2
I Open Valve I EngineOn I Open Valve
I Close Valve I EngineOff I Close Valve

ok

Vi

o

Vo

Meta—System

Figure 3.15: The tank system logic control and the meta-system

Through execution of the member functions in the given entities, the meta-system
creates the flow-oriented structure depicted by the Petri net in Fig. 3.14. To
investigate this further, we look at one member-function of the engine-entity (see

Fig. 3.16)

The meta system calls the member functions of the entities to fulfill the process-

requirements. Thus it “expands” every entity along the time-axis.

30 CHAPTER 3. TECHNIQUES OF MODELING SOFTWARE SYSTEMS

?
_ Set Flag
CEngine: m_Eng Eng. On
EngineOn
EngineOff
Check
Port

Figure 3.16: One Entity of the tank-system and its flow-oriented components

3.3. OBJECT ORIENTED DEVELOPMENT 31

3.3.5 Building up a Metasystem

A Metasystem is the system which encapsulates smaller systems and exerts ad-
ministrative influence on its subsystems. The Metasystem takes care of the struc-
ture which is built up using the blocks we have discussed in the section above.
There must be one component in a complex system which sets up the blocks,
generates blocks from plans and fills them with certain sets of parameters.

If we look at it in an administrative manner, one can setup a hierachy: an object
oriented software consists of:

1. A Meta System

2. Multiple plans for the subsystems (classes)

3. Entities which have been constructed from these plans (classes which have
been instantiated on the stack or in the heap)

We said that the meta system coordinates the structural variance in the whole
system. In fact, a meta system sets up data-streams to and from the entities and
coordinates creation and destruction of these entities.

In general, every block which takes control of other blocks or creates/destroys
them is also a meta-system with respect to that block.

)
J

O

Local Memory

Meta System

Local Memory

Meta System Memory

Local Memory

Figure 3.17: A Meta System

The Meta-System also routes events and orders to the blocks. In fact, for our
purposes, we do not stick exactly to the concepts given in [17], that all infor-
mation flow is routed by the meta-system, but that the meta-system sets up the

32 CHAPTER 3. TECHNIQUES OF MODELING SOFTWARE SYSTEMS

blocks such that they can capture data themselves.

m { \
\
I
()
-O- 3
£ £
Local Memory a8 5]
(% P
I &
Local Memory 2 13
e
Local Memory 2
O
\
O O
Additional Block—Block connections \ /

Figure 3.18: A Meta System with information flow between entities

If one considers embedded systems, we could even have two metasystems which
communicate using shared memory
From the concepts we discussed till now, we see that the whole design-process can
be expressed as a multiresolution problem and there is no unique meta system or
unique solution. However, our effort must be concentrated on producing a well
operable and well defined structure.

3.3. OBJECT ORIENTED DEVELOPMENT 33

O
\
O
\

LO- 5

2 |3

o

Local Memory g

Industrial PC
e S SharedMemory - ---------- - -~ - -~ -~ - b - -
O
\
O
\
O =
% o
Local Memory 2 %
21 |%
Local Memory g %
o
:
Embedded System

Figure 3.19: Two Meta-Systems in an embedded system

34 CHAPTER 3. TECHNIQUES OF MODELING SOFTWARE SYSTEMS

3.3.6 Inheritance and Overriding

From our i/o-Board example, we drew the conclusion, that inheritance is a major
feature required for an entity if abstraction or specification level comes into play.

Example: i/o-board handler (continued)

We first build up an entity of which the task is to handle i/o for a specified board
type.

ClOBoard

InitializeBoard

FreeBoard

Data Members

I/O-Board device

Figure 3.20: The basic i/o-board handling entity

For an extended version of our board, we have to include more functionality.
The most convenient way to do so is to inherit the functionality of data and
code members (member functions and member variables) from the CIOBoard
entity as depicted in Fig. 3.20. This we perform by defining a new class called
CExtIOBoard (Class for extended i/o-board functionality) and add all the nec-

3.3. OBJECT ORIENTED DEVELOPMENT 35

essary functionality. The predescribed inheritance is equivalent to assuming the
structure given in Fig. 3.21

ClOBoard

InitializeBoard

CreeBoard The base class

[Data Members

Additionel member
functions
SetBufferSize

Additional data
members
Data Members

Figure 3.21: The extended entity with more functionality

If we want to determine the whole or at least most of the structure of the classes
derived from the base class - in our example we would define a generic board
handling entity - then the problem is, that in a more specific derived class, some
or even all of the inherited functions have to be replaced or extended.

To overcome this problem, we define so called overridables. Overridables are vir-
tual functions which have a body and are declared as a normal function. Their
redeclaration in the derived classes leads to a non-execution of the base classe’s
implementation of the function but of the one declared in the derived class. Still,
their code is present and the overridables can be called by explicitly calling the

36 CHAPTER 3. TECHNIQUES OF MODELING SOFTWARE SYSTEMS

CExtIOBoard

InitializeBoard

FreeBoard

DataTransfer

SetBufferSize

Data Members

Figure 3.22: Outside view of the entities capabilities

base-class.

Example: For a special i/o-board, we need special code for initialization

Now we want to conserve the code which is present in the base class for initializa-
tion of the board. First we want the overriding function to be called and further
the base class’ function as well. This is depicted in Fig. 3.25 The mechanisms
overriding and inheritance are especially important for rapid prototyping appli-
cations and object oriented replacement for classical interpreters.

3.3. OBJECT ORIENTED DEVELOPMENT

ClOBoard

InitializeBoard

FreeBoard

SetlOMemory

Releasel OMemory

[Data Members

Initialize Board

Data Members

Figure 3.23: Simple overriding

The base class

Overridables

Functions which
override the ones
in the base class

Member functions
replaced by
Member functions

37

38 CHAPTER 3. TECHNIQUES OF MODELING SOFTWARE SYSTEMS

CExtlOBoard

InitializeBoard

FreeBoard

SetlOMemory

Releasel OMemory

Data Members

Figure 3.24: A “terminal”-look at the entity with overridden functionality

CExtlOBoard

InitializeBoard T Function of
InitializeBoard derived class

| FreeBoard | Function of base class

| Setl OMemory |

| Releasel OMemory |

Data Members

Figure 3.25: Overriding with explicit call to the base class

3.3. OBJECT ORIENTED DEVELOPMENT 39

3.3.7 Encapsulation

We have designed entities according to a certain principle: one entity handles one
physical (real-world) or software object.

The term encapsulation describes how certain functionalities are embedded in the
entity. It also has a second meaning - encapsulated data-members in entities are
normally passed by a member-function to any requesting unit/entity.

Example: The entity of type CBank handles money - the accepting and handing
out actions are performed by member functions.

CBank:Sparkasse CCustomer:Me
Hand out money O Withdraw money
Take in money O Deposit money
Data Members Data Members
Amount of money Amount of money

Figure 3.26: Encapsulation of money-handling in the Bank entity

Why is this necessary? One reason is of course that a complex entity has to take
care of all its data members. Assume the case in the example; if a bank accepts
money, the customer’s accounts have to be updated. In addition to this the entire
financial tracking system has to be well maintained.

Thus it is not enough if the customer were to keep his own account (provided the
customer can be trusted). The same question can also occur in software systems.
Although a strong encapsulation takes a lot of computational effort, it can be
used at least in some specific cases.

To strike a compromise between speed and safety, we are setting up the following
rules:

e Data-members may be read from everywhere

e Data-members are not directly written except for some special cases

40 CHAPTER 3. TECHNIQUES OF MODELING SOFTWARE SYSTEMS

e Each operation changing the contents of the entitiy’s memory block has to
be a member of the data-containing entity

This approach is not 100% compatible with the public, private and protected
concept in C++4.

3.3.8 Too much object-orientation

Object-orientation is as discussed a versatile tool for software development. Of
course, it also has its drawbacks and disadvantages.

The grouping of data and code, the instantiation procedures etc. take time and
make a program slower, if used frequently.

As in most technical problems, the developer has to make a trade-off between
structured development and speed of execution. In modern systems, the need of
computational power is in most cases satisfied and in a well structured applica-
tion, we will not find much difference in execution time in object oriented and
flow oriented software systems.

However we still have a question to answer “how much object-orientation is too
much and how much is all right?” A descriptive example will help us understand
the problem better.

Example: A dynamic matrix class is needed for an in image processing applica-
tion. We will try to develop the code according to our object-oriented principles.

CMatrix

CMatrix

~CMatrix

int Create(sizeX, sizeY)

int Fill(colour)

Data—Field and Members

Figure 3.27: Object oriented approach to matrix storage class

The Create member function allocates a field of memory which we allow to be
accessed by other entities.

3.3. OBJECT ORIENTED DEVELOPMENT 41

— —
—
—
|
|
I
|
|
I
:
I
3 :
> I
Q : :
g ! Data Field
: 1
=} |
B :
|
|
|
|
|
|
|
:
—
—
—

Figure 3.28: The matrix’s data-field

Hereby we guarantee a well structured entity for matrix operations which is easier
to handle compared to flow-oriented code. So far this approach helps us. The
overhead for class-initialization and cleanup consumes very little time in compar-
ison to all other operations and will thus neither be detected nor be remarked
even using benchmarking tools.

The extreme case - the purists’ case - is still correct according to our design
strategy: we could set up an entity for every pixel (as a software object) and
encapsulate the floating point value in the pixel. To initialize one floating point
pixel of approximately 8 byte, we would have to initialize a whole entity (which
takes maybe 1 kByte of memory). Even worse than the memory consumption
is the overhead (if only calling the encapsulating data-handling functions and
constructors/destructors). By the way, this is one reason why modern text pro-
cessors create huge files which take lots of megabytes even for very small text
of some pages: every letter in a line of text is set up as an entity containing all
specifications such as style, colours and other properties.

42 CHAPTER 3. TECHNIQUES OF MODELING SOFTWARE SYSTEMS

3.3.9 Rapid Prototyping and Object oriented replacement
for Interpreters

Rapid Prototyping is in our days a frequently used term - rapid prototyping
allows engineers to have their solutions ready fast because development and
programming-effort is minimal and a development-environment with an overall-
design is available.

To develop the structures for a rapid prototyping system, we have to find out
how interpreters can be replaced by object oriented structures.

The role of an interpreter is - roughly speaking - to read command-lines and
translate them into function calls, passing the recognized (resp. interpreted) pa-
rameters to this function.

One problem related to this task is that a parser program has to be set up which
reads the commands from either the keyboard or any other input source, such as
file-input.

This is one reason which makes an interpreter slow in comparison with compiled
code.

For many projects which are related to rapid prototyping, a somehow interpre-
tative structure is absolutely necessary if one wants to avoid building compilers
for special applications.

The classical interpreter reads one command, such as
PRINT a

and decomposes it into argument and command part. The command is then
simply translated into a function call with the given parameter. Assume the
interpreter is built in C, then it would make a call to

void print(char* a)
{
//Printing code

//Finished!
}

In addition to that, the interpreter checks whether the given parameters are ok or
if e.g. the number of parameters is exceeded, etc. We can avoid the interpretation
mechanism and obtain nearly the speed of a compiled program if we introduce
an object oriented structure.

In order to obtain a suitable structure, we first think of what to include in an
operator:

3.3. OBJECT ORIENTED DEVELOPMENT 43

e the executable command (a standard function)
e the parameters

e a possibility to parametrize the given function

If we take a closer look, this structure resembles closely to a standard entity which
we have already examined.:

e member functions which also include the executable command
e the necessary parameters (member-variables)

e a possibility to parametrize the operator: either through serialization or
through a graphical user input

Example: a classical interpreted program for reading user-input and printing the
same input

INPUT A
PRINT A
INPUT B
PRINT B

This is according to our first investigation translated into:

‘ Interpreter Action ‘ Program action

read command + params
decompose command
found INPUT command | input(a);
read command + params
decompose command
found PRINT command | print(a);
read command + params
decompose command
found INPUT command | input(b);
read command + params
decompose command
found PRINT command | print(b);

Concerning the program actions, we consider again functions written in C with
the following prototypes:

void input(char* text);
void print(char* text);

The same code will now be built up according to the object-oriented approach
and to the principles introduced above. For every command, we set up an entity

44 CHAPTER 3. TECHNIQUES OF MODELING SOFTWARE SYSTEMS

read and decode read and decode read and decode read and decode

command command command command

execute execute execute execute

execute execute
(N T R
| R | N
execute execute

Figure 3.29: Top: timing in the interpreted case, bottom: timing using an object
oriented replacement, the small gaps in between the execute-parts depict the time
consumption by the overhead processing (pointer- and list-operations)

providing the required facilities.

Clnput: Inputl CPrint: Printl Clnput: Input2
| Reading fcn. | | Printing fcn. | | Reading fcn. |
| Acquire Parameters | | Acquire Parameters | | Acquire Parameters |

(—] —| [T—]

Figure 3.30: Object oriented representation of the command structure

These blocks must now be connected in an appropriate manner. As the blocks
need data from other blocks, it is necessary to provide simple access. Which data
is needed by one block is set up using the parametrizing function of the block.
The parameter could simply be a pointer to the storage area of any other block
which contains e.g. the user’s input.

The appropriate meta-system for these operator-blocks is the object oriented list.
Every node of the list contains one of the operators and besides the list function-
ality a possibility to execute the member functions. of the blocks in the list. The
blocks themselves have to “know” about the list to obtain their required data from
another block in the list. And the blocks themselves contain lists for data-output.

In this chapter, we have developed the necessary tools to decompose or compose
a system the object oriented way. Now we have to think about another important
aspect of object-orientation: taking advantage from inheritance and building up
abstraction levels - so called class hierarchies.

CNode:Nodel CNode:Node2
1 =
S |-
Read: Write:
Commandl Command?2
Parameters Parameters

3.3. OBJECT ORIENTED DEVELOPMENT

45

CNode:Node3

| <

CNode:Node4

L

Read: Write:
Command3 Command4
Parameters Parameters

Figure 3.31: An object oriented list which interprets commands

46 CHAPTER 3. TECHNIQUES OF MODELING SOFTWARE SYSTEMS

Chapter 4

Hierarchical Class Design

Hierarchical class design is an important topic in object oriented modeling. By
using a good design concept, the building process of a complex application can
be kept transparent.

A hierarchical class design requires thinking in terms of abstraction levels: the
basic operators must form a most unspecified functionality but a well defined
structure. It has to form a generic base class.

Example: Given is a block diagram. All the different types of blocks must be
specified originating from one base class.

w e u X
> G

y y i Y
N A

Figure 4.1: A block diagram for a control systems setup

4.1 Building a generic basis class

To build up a hierarchical class design for the problem given above, we have to
first find the most general design for a block. A block has inputs, outputs, a cer-
tain functionality and as it is realized on a computer system, some initialization
and deinitialization operations (such as allocating or freeing memory etc.) have
to be performed.

Example: From the given Block diagram, one has to build the generic basis class

47

48 CHAPTER 4. HIERARCHICAL CLASS DESIGN

U — N

Figure 4.2: One Block as a grey box for all blocks

The unspecified block has to contain:

e p Input connections
e ¢ Output connections
¢ An empty functionality

e Cleanup and initialization code

This functionality has to be inherited by every block. If we think in block-
structures, the software equivalent to the generic block of the block diagram can
be given as shown in Fig. 4.3.

Generic Block

Initialization

Cleanup

Execution (Block functionality)

I/0—-Handling

Figure 4.3: The generic block in software

4.2 Building more specified classes

The next step is to extend the generic block’s capabilities. For this purpose,
we first focus on an integrator block. The integrator block (in case a single

4.2. BUILDING MORE SPECIFIED CLASSES 49

Integrator Block

Initialization
Cleanup
r
Integration u y
— 3
I/0-Handling

Figure 4.4: The integrator block in software

input/single output system is considered) would be structured as given in Fig.
4.4

the Input/Output restriction to a SISO-system is not satisfactory; for generality
reasons, one has to keep the input output structures as variable and transparent
as possible. One important fact is, however, that the number of inputs and out-
puts should be freely configurable.

Before we go into detail concerning the different structures of the operator, we
first analyze the two other blocks. For the nonlinearity, one obtains the structure
given in Fig. 4.5

Finally, we obtain an informational block structure for the transfer function G(s).
This block is given in Fig. 4.6

Now, the question is, if there should be introduced another abstraction level,
another layer of less or more specified block types. This reflection leads to the
following result:

e All given Blocks differ concerning their needed data and their basic func-
tionality

e [t can be foreseen, that for different block-types, e.g. nonlinearities, another
type of functionality is needed than for e.g. an integrator

If we want to introduce more generality, another Block layer can be included.
This new block-layer is a more specified version of the generic block with special
functionality for the actual block’s duty. Assume, for our problem, we specify the
block types Transfer Functions, Integrators, Nonlinearities, Multipurpose blocks.
From these intermediate and more specific definitions, one can derive the final

30 CHAPTER 4. HIERARCHICAL CLASS DESIGN

Polynomial Nonlinearity Block

Initialization

Cleanup

Nonlinear Transformation u Y v
— % ~ >
N A

1/0-Handling

Figure 4.5: The polynomial nonlinearity block in software

Transfer Function Block

Initialization
Cleanup
'
Linear Transformation u y
—] G(s) ———
1/0—-Handling

Figure 4.6: The transfer function block in software

block, using the functionality already given in the intermediate layer.

With these layers of abstraction, a real hierarchy can be built up; an example
hierarchy is given in Fig. 4.7

4.3. TIME ISSUES

Generic Block

Initialization

Execution (Block functionality)

Cleanup |

1/0-Handling

o1

Integrator Block

Transfer Function Block

Initialization		Initialization
Cleanup		Cleanup
Integration		Linear Dynamics
1/0-Handling		1/0-Handling

Polynomial Nonlinearity Block

| Initialization

| Nonlinear Transformation

| 1/0-Handling

-n

| Cleanup |

Heun Integrator

PD Block

| Initialization

| Initialization

Cleanup

Cleanup

1/0-Handling

Execution (Block functionality) |

| PD-Operation |
| 1/0-Handling |

Figure 4.7: The hierarchy of transfer function blocks

4.3 Structure of an operational block with re-

spect to execution time

To evaluate the structure of an operational block, it is necessary to make a model
of the execution process. As we saw in the beginning, Petri nets with timed
switching added can be used for that purpose.
The flow diagram, given in Fig. 4.8 shows the execution-oriented view of the
block which takes us back to the timing question. A very effective timing “visu-
alization” can be performed again using Petri nets with duration extension.

The object oriented view on a system structure does not give any timing-related

92 CHAPTER 4. HIERARCHICAL CLASS DESIGN

Generic Block
Initialization E—
Cleanup ‘
Execution (Block functionality) EV: :::l
1/0—Handling @

END

Figure 4.8: The flow diagram of the functional implementation of the operator

information. To show that, we go back to the block diagram example for which
we derived the classes for the different blocks. Now the task is different; from the
given blocks, which are now present in software, we have to construct a control
loop and run the loop.

w e u X
| > G

y :
N W,

A

Sensor Plant

——— Controller ——
™

Figure 4.9: A block diagram and the informational setup

If Fig. 4.9, we find the control loop from the above example. We now assume,
that we do not have a real hardware, but that the whole loop is constructed using
software blocks. For that reason, we are free concerning the execution time of

4.3. TIME ISSUES 23

the blocks and can focus on the flow structure which we build up using the given
blocks as given in Fig. 4.10

Figure 4.10: The informational view on the block-diagram

For building up the given control loop in software, we need:
e Controller

— A summation block

— An integrator block
e Plant

— A transfer function block
e Sensor

— A nonlinear function block

The informational setup leads to the software-block-structure given in Fig. 4.11
Now, the setup of the execution has to be made up. As you can see from Fig.
4.11, the structure is modeled but another system is needed which triggers the ex-
ecution of the execute-functions in the blocks and before that forces initialization
or after the execution ends cleanup of the operator blocks resp. their memory. A
system which controls a system with structural variance is called a Metasystem
in the following. The Metasystem has in our case the following tasks:

1. Seting up the given block structure
2. Executing the initialization routines of the blocks
3. Executing the execute-routine of the blocks

4. Cleaning up, using the cleanup routines provided by the blocks

The blocks must, to grant a proper system-theoretic function be executed in such
a way, that no algebraic loops occur. In more complex applications, one has to
set up an execution scheduler that decides, which block has to be executed. In
the present case, execution is easier: following the loop from the left of Fig. 4.11,

o4 CHAPTER 4. HIERARCHICAL CLASS DESIGN

Generic Block Integrator Block Transfer Function Block

| Initialization | Initialization | Initialization

Cleanup | Cleanup | Cleanup |

| Execution (Block functionality) | Integration | Linear Dynamic Transformation

1/0—-Handling 1/0-Handling

mOs Ng¥
(O] O]

Polynomial Nonlinearity Block

1/0-Handling

| Initialization

Cleanup |

| Nonlinear Transformation

1/0-Handling

O— O

O

O

Figure 4.11: The informational view on the block-diagram

one execution function after the other can be executed, rebeginning at the top
left of Fig. 4.11. This problem becomes more complicated if real-time systems
with connections to hardware are focused.

The example makes clear, that time-oriented modeling and structural setup of
an object oriented program are practically independent and in addition to that
have to be thought over explicitly.

Now, there are two questions remaining: how is data transport organized be-
tween two blocks - or is it necessary to transport information? If we extend our
view and take the Metasystem into account, then we obtain a better idea of how
execution of the operators and data-handling can be performed.

4.4 Hardware in the loop simulation

Hardware in the loop simulation is a more and more frequently used term in
our days. The difference between hardware in the loop simulation and pure
simulation is that certain actors or sensors are used as in an industrial setup also
in the laboratory experiment.

Hardware in the loop simulation makes the modeling error smaller as only parts of

4.4. HARDWARE IN THE LOOP SIMULATION 95

the whole system have to be approximated using mathematical models. Another
advantage is, that parts for which it is difficult to find an appropriate model can
be used in their original form and the effort of the developer can be directed
towards e.g. the control system design.

In our general software structure, we can easily build up a hardware in the loop
system.

w(t) Y

A

MPC

Y

Y

HC)

Y

Gy

A

Figure 4.12: A complex nonlinear control systems setup

Figure 4.12 shows a control systems setup which is difficult to handle and further-
more contains an MPC (model predictive controller). Modeling of such a system
would require a very high effort. A model which only creates nominal system
outputs is not suited to controller design. This problem can be avoided using
hardware components, in our case for the plant and measuring system.

w(t) Y

Az

Y

MPC

Y

G,

Y

A

G,(9

Realized in Software Redlized in Hardware

Figure 4.13: Subdivision into simulated parts (software) and hardware parts
(hardware)

In Fig. 4.13, an exemplary subdivision into two parts, hardware and software
part are shown. Of course, the software has to be run on e.g. an industrial PC
and this one has to be coupled with the hardware parts using a suitable interface.
This is in general an A/D-D/A converter board (analog to discrete time and vice

56 CHAPTER 4. HIERARCHICAL CLASS DESIGN

versa). To handle these parts of the system, we have to introduce special entitys
in our informational setup. The necessary extensions are shown in Fig. 4.14.

w(t)

MPC Gl(S)

Y
\17

<
Y

Y

o
A

Realized in Software Realized in Hardware

Figure 4.14: Additional components for a hardware in the loop system

From the block diagram given in Fig. 4.14 we have to derive a new informational
structure to deal with the connections between hard- and software (see Fig. 4.15).

Model Predictive Controller Handling of D/A-Board Hardware Subsystem
| Initialization | | Initialization |
| Cleanup | | Cleanup | = ‘ ‘ H H H
| E ion (Block functionali | | Integration | H HI e
xecution (Block functionality) g ; EEI R
| 1/0-Handling | | 1/0-Handling | : : EI i
o H :I i o o
o E i m
H O EEE

Handling of A/D-Board

| Initialization

1/0-Handling

Cleanup |

| Nonlinear Transformation

O——

O

I
|

Figure 4.15: The extended informational structure of a hardware in the loop
system

4.5. TRANSFER OF STRUCTURES FOR DIFFERENT PLATFORMS 57

4.5 Transfer of structures for different platforms

Informational setups as given in Fig. 4.16 can be transformed for different plat-
forms. In general, one has to set up e.g. a controller’s or sensor’s microcontroller
in order to finish the development and to set up the end product for industrial use.
A fully parametrized structure as it is given in 4.16 can be easily converted into
a realization another platform by providing the operator functionality and the
necessary data fields with the configurations that were set up using the original
structure.

Generic Block Integrator Block Transfer Function Block
| Initialization | Initialization | Initialization

Cleanup | Cleanup | Cleanup |

| Execution (Block functionality) | Integration | Linear Dynamic Transformation

1/0-Handling

1/0-Handling 1/0-Handling

Polynomial Nonlinearity Block

| Initialization

Cleanup

| Nonlinear Transformation |

1/0-Handling

S - -
|

Mirocontroller

Industrial
PC

Programmable
Logic Control

w0 = =

Synoptics Latticell 10114

Figure 4.16: Informational setups for different platforms

After parametrization has been performed, the block structure is built up as
specified by the developer on the simulation system but using the code for the
operations for the target system and then downloaded on the target. This process
can be more or less automated.

o8

CHAPTER 4. HIERARCHICAL CLASS DESIGN

Chapter 5

Elements of complex systems

Systems which are easy to build up are most often systems with a fixed structure.
Fixed structure systems are frequently used for simple tasks - e.g. a digital PID
controller need not be built up dynamically. Many controllers however, especially
in learning or predictive control systems require an overall dynamic structure.

5.1 Dynamic lists

If we consider dynamic system structures, the terms dynamic memory allocation
and dynamic setup are essential. Dynamic data handling can be achieved using
dynamic lists. The implementation of such a list will be handled in our block-
oriented way of looking at this class of problems.

5.1.1 Construction of a dynamic list

A dynamic list - if it is built in the classical non-object oriented way - is difficult
to handle; this is one reason why most programs developed during the 80’s were
built up in a statical manner. Dynamic data handling can be held very easy if
object oriented concepts are used.

After the entity which is in charge of the organization and handling of the dy-
namic list is once constructed, the developer should not come into contact with
anything else than a comfortable API which allows manipulation of the list’s en-
tries (such as insertion and deletion).

Then we have the list’s nodes The list’s nodes encapsulate pointers to the data-
objects handled and pointers to the following or preceeding element in the list.
this concept allows to store even elements of a different type in such a list (with
additional overhead, which is automatically provided by C++). The list can be
visualized as given in Fig. 5.1.

99

60 CHAPTER 5. ELEMENTS OF COMPLEX SYSTEMS

CObjectList
AddHead O
AddTail

RemoveHead
| RemoveTail |
| |

Y

CNode:Nodel CNode:Node2 CNode:Node3 CNode:Node4

N v | D | == | (N) = | D

Figure 5.1: The object oriented entity diagram of a linked list with presently 4
nodes

The meta-system for the list’s nodes is in this case the object oriented list entity
itself which provides the list’s API as member functions; these member functions
perform all necessary tasks concerning the handling of the list.

Example: A sample class definition for a dynamically linked list and its nodes.

1. The lists node with constructor and destructor and pointers to the preceding
object as well as to the following object

#ifndef ONEDIMNODE
#define ONEDIMNODE

#include <qobject.h>

class OneDimNode : public QObject
{
public:
OneDimNode () ;
OneDimNode (Q0bject* Previous,Q0bject* Next,
Q0bject* NewOne) ;

5.1. DYNAMIC LISTS 61

//This member-function initializes the fields
//of the OneDimNode-Object
//with the given pointers

virtual ~OneDimNode();

Q0bject *m_Previous; //Pointer to preceding node
Q0bject *m_Next; //Pointer to following node
Q0bject *m_Actual; //Pointer to contents of this node
};
#endif

2. The class definition for the ObjectList-Entity

#ifndef OBJECTLIST
#define OBJECTLIST

#include <gobject.h>

class ObjectList : public (QObject

{
public:
ObjectList();
virtual “ObjectList();
public:
long m_ListPos; //Listenposition
long m_Count; //Nummer der Elemente in der Liste
long m_old_i; //01d wanted Position in List
OneDimNode* m_FirstNode; //First node of the list
OneDimNode* m_01dNode; //Last wanted node
OneDimNode* m_TailNode; //Last node of the list
public:

long GetPosition(QObject* ThatObject);

//Get Listpos from Pointer

//If pointer is not valid, that means Object wasn 't found,
//-1 will be returned

//the long variable for the first object in the list ist 0

void InsertBeforePtr(QObject* ThatObject,Q0bject* Follower);
//Insert Object before another Object

//Insert a Pointer (to the new Obejct) before an Object
//in the list

//if the Ptr. to the follower is not valid,

//0bject is inserted at the Head of the List

void InsertBeforePos(QObject* ThatObject,long Position);

62

CHAPTER 5. ELEMENTS OF COMPLEX SYSTEMS

//Insert the Object before the Object according to the
//Position variable

//1f the position given is not valid,

//the Object will be inserted at the

//head of the list

void InsertAfterPtr(Q0bject* ThatObject,Q0bject* Previous);
//Insert Object after another Object

//Insert a Pointer (to the new Object) before an Object
//in the list

//if the Ptr. to the previous object is not valid,

//the Object will be inserted at the Head of the List

void InsertAfterPos(QObject* ThatObject,long Position);
//Insert the Object after the Object according to the
//Position variable

//1f the position given is not valid, the Object will
//be inserted at the

//Tail of the list

void AddTail(QObject* ThatObject);

//Adds the Element given by the pointer to a QObject
//at the End of the given

//List

void AddHead(QObject* ThatObject);

//Adds the Element given by the pointer to a QObject
//at the beginning of the

//given List

void RemoveHead();
//Removes the Head of the list

void RemoveTail();
//Removes the tail of the list

void RemoveAtPtr(QObject* ThatObject);
//Removes an Element according to the given pointer

//Removes the Element at the specified position
void RemoveAtPos(long Position);

//Gets the Tail-Element s position
long GetTailPos();

Q0bject* GetTailPtr();
//Retrieves the ptr to the !!luser’s!! object stored

5.2. SERIALIZATION AND RECONSTRUCTION OF BLOCKS 63

//in the Tail node in m_Actual

long GetAtPtr(QObject* ThatObject);
//Retrieves the ptr to the !!user’s!! object stored

Q0bject* GetHeadPtr();
//Retrieves the ptr to the !!luser’s!! object stored
//in the Head node in m_Actual

long GetCount();
//Returns the length of the list

long GetHeadPos();
//Returns the Position of the list s head

Q0bject* GetAtPos(long Position) ;
//Returns the Pointer to the Object which is
//determined by position

OneDimNode* GetHeadNodePtr();
//Retrieves a pointer to the Head-Node

OneDimNode* GetTailNodePtr();
//Retrieves a pointer to the Tail-Node

OneDimNode* GetAtNodePtr(QObject* ThatObject);
//Retrieves a pointer to the Node at a given position

};
#endif

5.2 Serialization and Reconstruction of blocks

The dynamic data-handling also requires a dynamic concept for data storage and
restauration. One problem however with the dynamic structure is that the meta-
system cannot perform these operations (called serialization in short) - if these
operations had to be performed by the meta-system, it had to “know” about
the overall data structures of all entities which have to be serialized. This is of
course easy if everything is fixed. From the dynamic point of view, it is better to
“delegate” the storing and reconstruction to each entity itself.

To avoid these difficulties, the object-oriented approach provides the necessary
tools:

We add the serialization to the entity itself - the object oriented list for example
“knows” its length as it operates on its contents and sets up or respectively de-

64 CHAPTER 5. ELEMENTS OF COMPLEX SYSTEMS

stroys nodes and has to remember its state.

Example: Take again the example of a dynamic list; now the list has to be saved
and also reconstructed. To perform this task, the meta-system had to “know”
the following details:

e Type and length of the node-items
e number of nodes

The same holds for reconstruction of the list.

CObjectList
AddHead QO
AddTall
RemoveHead
RemoveTall
Serialize

Figure 5.2: Extended list entity with serialization added

The serialization-functionality is taken over by a specific member-function as it
is shown in Fig. 5.2.

The serialization-function is build up with storing and loading code. The higher
level-entity calls the serializaition function of the lower level entities.

void ObjectList::Serialize(Archive *ar)
CNode* m_Node;
int i;

if (ar->isLoading==TRUE)
{

//Read length of list
ar>>m_count;

for (i=0;i<m_count;i++)
{
//Add a node to the list

5.2. SERIALIZATION AND RECONSTRUCTION OF BLOCKS 65

m_Node=new CNode;
//Call the node’s serialize-method
m_Node->Serialize(ar);
}
}

else
m_count>>ar; //Save length of List

for (i=0;i<m_count;i++)
{
m_Node->Serialize(ar);
}
}

The code for serialization of the object stored in the node is then invoked and
migth look as follows:

void Node::Serialize(Archive *ar)

{
//Call the Serialize method of the node’s contents
m_Actual->Serialize(ar);

}

The node’s contents could then have the following serialization method:

void Object::Serialize(Archive *ar)

{
//Call the Serialize method of the node’s contents
if (ar.isLoading==TRUE)
{
ar>>m_myvariable;
ar>>m_mytext;
}
else
{
ar<<m_myvariable;
ar<<m_mytext;
}
}

5.2.1 Dynamic Data Handling and Data Exchange

Dynamic data handling and data exchange can be set up using the dynamic list
that was introduced in the beginning of this chapter.

Example: Assume a multiple input multiple output signal processing operator
block which occurs frequently in control applications.

66 CHAPTER 5. ELEMENTS OF COMPLEX SYSTEMS

— R
— R
— R

Figure 5.3: A multiple input multiple output (MIMO) signal processing operator

We have already developed software entities which are handling or representing
real-world objects. As one of our major aims is the construction of a fully dy-
namic environment, we now focus on how data in- and outputs of such blocks
can be connected dynamically.

First the outputs: if an operator provides multiple sets of information and dif-
ferent operators provide different sets of information, then it is difficult to find
a dynamical solution for connection of in- and outputs if no whole underlying
dynamical concept is used.

One possibility to handle data in a fully dynamical way is to put the entity’s
output-data in a dynamical list. The data-set can then be extended by a type-
specifier which is checked by the following block for which this output has been
selected as an input. Another reason for using a list-structure is that lists and
their contents can easily be used to fill up user interface elements. Another ad-
vantage is that lists can be easily indiced and thus their entries can be selected
by just giving the list position.

Our operator X itself contains a pointer on the list-entity. Thus it can access the
list and all of its nodes - the other operator entities. If we now specify the index
of another operator in the list, then we can obtain the pointer to the specific
operator selected by specifying its index in the list. Further, we can select an
input four our operator X just by giving the index of the list entry in the output
values list of the operator Y. In that manner, we can connect all the operator
blocks dynamically.

5.2. SERIALIZATION AND RECONSTRUCTION OF BLOCKS

67

1

ObjectList:List

[Node* m_firstnode;

Y

Node:Nodel

(i

Node:Node2

Node:Node3

ot

Y

Operator:Block1

Figure 5.4: A dynamic data exchange concept for object oriented systems

68

CHAPTER 5. ELEMENTS OF COMPLEX SYSTEMS

Chapter 6

User Interfaces

The user interface is a very important part of the man machine interface. On one
hand, the design of a user interface is a time consuming task, on the other hand,
it is definitively a part of an engineering solution.

A user interface has to fulfill the following specifications:

It has to be conformal to the norms given by the end user

A good user interface is easy to use

Process visualization is an important topic in building user interfaces

User input has to be either forwarded to other entities of the system or to
be preprocessed or displayed

Considering todays user-interfaces, the user-requirements raise with respect to
time. That is one of the main reasons, why graphical user interfaces became
popular. One problem which is encountered in the context of graphical user in-
terfaces is that most operating systems that offer such an interface are not built
for process control or signal processing issues and thus are not real time capable.
Possibilities to overcome this lack will be dealt later in this book. However the
need of a good visualization and graphical user-interaction is there. In the object
oriented way of system design, one can easily decouple the user interface from
other underlying system layers, also from realtime layers. That is the reason why
user interfacing is dealt separately from other topics here.

6.1 The Basis of a user interface

If we are talking about User-Interfaces, we usually think of todays graphical op-
erating systems and the software available. In fact, text oriented user interfaces
vanish more and more. However, all the predescribed types of user interfaces have

69

70 CHAPTER 6. USER INTERFACES

in common that they realize a man machine interface and thus have an important
role in system design.

All user interfaces have in common, that they accept specific inputs from e.g.
Keyboard, Mouse, etc. and evaluate those in order to yield the execution of a
certain algorithm.

Talking about user-interfaces, the following important expressions occur:
e Input devices and their handling
e Message queues and messages
e Event or message handling

The input devices are the sources of user input for the user interface.

Where in simplistic systems, one can easily handle inputs and need not share any
devices, in more sophisticated systems, the concept of messages comes into play.
Messages are generated by the underlying layer of the operating system.

User—Interface / Program

? 2

Input Device Drivers / Output Device Drivers /
Direct Software Access Direct Software Access
Input devices Output devices

Figure 6.1: The simplistic and classical approach to a user interface

Thinking in terms of e.g. X11 (X-Windows on Linux/Unix-Machines) or Windows
NT, we have to extend our view from the hardware-architecture to a multi-user
multi tasking system. The resources (devices, i/o, file-systems) have to be shared
amongst multiple processes (programs).

These systems usually provide drivers for the hardware and an API (applications
programmers’ interface) for a standardized i/o-interface.

This helps the programmer a lot, because he finds a hardware-independent in-
terface and the program works on different machines not regarding the type of
hardware used in the underlying architecture.

6.2. CLASSICAL PROGRAMMING 71

User—Interface / Program 1 User—Interface / Program 2

0 0

Software Layer (e.g. X11)

? 2

Input Device Drivers / Output Device Drivers /
Direct Software Access Direct Software Access
Y $ | Cé
Input devices Output devices

Figure 6.2: The simplistic and classical approach to a user interface

6.2 Classical programming

The classical way of programming a user interface is to introduce a function which
asks for keyboard input, mouse input and other events.

6.2.1 A text-based interface

Text based interfaces are easy to implement. In general one obtains the structure
given in Figure 6.3.

The simple concept given in Figure 6.3 works only if all actions are executed in a
small time window. If more computational effort is expected, user input should
be processed asynchronously.

Asynchronous checking can be performed if two tasks, one for calculus and one
for user issues are introduced.

The structure given in 6.4 is the realization of the predescribed two task method;
the communication can be realized using a fifo buffer, into which one task writes
the actual requirement.

6.2.2 A graphical user interface

A standard graphical user interface can be built up in the same way as the
predescribed text-oriented one. Concerning graphical output, this is not much
more effort than the text-based version. One problem however is to implement

72 CHAPTER 6. USER INTERFACES

Start

Initidlize al

W

Acquire Keyboard
input

¢

Input

- —
—-

Action C

Action D

Cleanup

End

Figure 6.3: A classical way of user interface handling

graphical user input - in fact, it is a very time consuming task to build up user-
interaction in a flow-oriented environment.

First, all Buttons and all user-changeable items are put up. The rectangular areas
which have to be checked for e.g. mouse or touchscreen input have to be inserted
in a list.

In the main loop of the software, mouse/touchscreen position has to be acquired
and through the list, one has to find out, whether a button has been pressed or
other fields have been altered.

6.2. CLASSICAL PROGRAMMING 73

Initialize all

Initialize all

Y

Acquire Keyboard

A

input

Y
Key pressed ? User Input ?

No Exit Yes FIFO Yes No

Y ; Y

Action D Input from Compute
FIFO

Y

Cleanup

End

Figure 6.4: A user interface with two tasks and FIFO for message passing

(BEGIN)
Y

| Initialize Al

—
—~—

Y

| Acquire User Input |

Y

Input (Coordinates, Mouse pressed, Mouse moved)

Y

Button A
press action

Figure 6.5: A simple graphical user interface (flow-oriented technique)

Then a huge case-command is executed in which we call the necessary functions
to act accordingly to the user’s input. (In former Windows for Workgroups pro-

grams, this was called the winmain-function)

74 CHAPTER 6. USER INTERFACES

One problem remains; that is the complicated structure of the user interface - it
has to be tested, which element has the focus (is active) at a point of time and
then the keyboard/mouse-actions have to be routed to that element.

Message 10 “_, From OS BEGIN
Message 9
Message 8 Y
Message 7 Initialize All
Message 6 -
M essage 5 "
to Application
Message 4 »| Acquire User Input
Message 3
Y
Memory for Message /" Input (Coordinates, Mouse pressed, Mouse moved) — \
Queue
Y
Button A
press action

Figure 6.6: A simple graphical user interface with message queuing

That is the reason, why the concept of messages was introduced: all events which
were generated by the user are first fed to a message queue and then read by the
part of the program which is dealing with this particular element. In that way,
even user interfaces with a high depth can be handled.

6.3 The object oriented user interface concept

For building up user interfaces, object oriented techniques have prooved that they
are very efficient. The explanation for that fact is, that every user-interface el-
ement is an object which has to be handled. A button for example has certain
facilities that are the same for all possible buttons.

Every button takes the same messages (e.g. mouse-inputs) as another button
and thus has the same message handling routines. Again this is a case for our

6.3. THE OBJECT ORIENTED USER INTERFACE CONCEPT 5

object-oriented entity concept.

6.3.1 The main application entity - message handling

Talking about object oriented systems, we must not forget, that at least the “top-
most” of the entities has to be flow-oriented.

This is compatible with what we said concerning setting up entities.

In general, the overall-meta system is the operating system. Dependent on the
operating system, a certain startup-code is executed. This startup-code then in-
stalls the entities of which comprises the designed software system and in addition
to that “connects” their information flow paths.

Example: Standard application paradigm

QApplication:MyApp

HandleMsg

Figure 6.7: The standard message handling entity

The member function which handles the data streams from and to the operating
system is the so called message loop “HandleMsg”-Function. This function polls
the system for messages and passes them on to other entities of the system (see
Chapter 6 for the standard-application and user-interface concepts).

An application-entity which handles the messages obtained from the operating
system is contained in most of today’s standard-application concept.

Example: A user-interface with 2 buttons

Generally speaking, there is no unique way of designing an interface (concerning
its underlying structure). One approach has become very common although and

76 CHAPTER 6. USER INTERFACES

is implemented as a standard-approach: the so called application-document-view
paradigm.

The idea is again to separate different entities according to their “duty” in the
whole construction; the paradigm that is described in the following has been first
involved with a very specific aim: text-processing. Nevertheless the approach is
useful as we will find out.

6.3.2 Setting up the entities

We need a concept for message queuing and initialization of the entities. This is
the first step that leads us to a working application. The following program code
is the main function of a small application using the qt-toolkit.

int main(int argc, char *argvl[])
{
QApplication a(argc, argv);

a.setFont (QFont ("helvetica", 12));

Simpleapp *simpleapp=new Simpleapp();
a.setMainWidget (simpleapp) ;

simpleapp->setCaption("Document 1");
simpleapp->show() ;

return a.exec();

The application entity is created through instanciation of QQApplication with Sim-
pleapp as a main window. The Message-loop which is then handled by QAppli-
cation is started by calling a.exec(); The application’s main window’s constructor
is called when Simpleapp is instanciated. It initializes the other entities: view
and document.

Simpleapp: :Simpleapp()
{
setCaption("Simpleapp " VERSION);

initDoc();
initView();

}

where initDoc(); and initView(); are member functions of the Simpleapp entity
as one can see from the following class definition:

6.3. THE OBJECT ORIENTED USER INTERFACE CONCEPT

class Simpleapp : public (MainWindow

{
Q_OBJECT
public:
/** construtor */
Simpleapp();
/** destructor */
“Simpleapp();
/** setup the documentx*/
void initDoc();
/** setup the mainviewx/
void initView();
private:
/** view is the main widget which represents
* your working area. The View
* class should handle all events of
* the view widget. It is kept empty so
* you can create your view according to your
* application’s needs by
* changing the view class.
*/
SimpleappView *view;
/** doc represents your actual document and
* 1s created only once. It keeps
* information such as filename and does
* the serialization of your files.
*/
SimpleappDoc *doc;
};

7

The application-entity is then responsible for the further interaction with the
operating system and the user. The application entity passes messages to other
entities such as graphical user interfaace elements or vice versa to the operat-
ing system. The application entity itself realizes the meta-system for the rest
of the entities which then handle the graphical user interface. The interface-

functionality is then provided by the view-entity and the document-entity.

The view-entity realizes the viewer to a certain dataset which is contained in the
document entity. At first sight, this approach seems to be useless for our type of
applications - namely control and signal processing - because where do we handle
documents?

78 CHAPTER 6. USER INTERFACES

Of course, we have to think in a more abstract manner: one major aspect of a
control application is the visualization of data and also storage of e.g. control
values.

Maybe we would like to attach more than one viewing entity to a set of data,
e.g. one which shows a 2D-graph of the phase plane, another one, which plots
the trajectory over time.

Assuming the presented needs, the concept of one data-containing entity with
all methods included for storing, loading and so on is expedient - as well as the
viewing entity which includes all the necessary stuff for visualization, printing, etc.

QApplication:Application

0

MainWndow

View Document

)
N

Figure 6.8: The standard application scheme

This approach can be seen as one attempt to give a unique solution to the user-
interface problem and as a possibility to subdivide a user-interface into entities.

6.4 Message-Passing and Message-Filtering

the idea of message filtering is to select from a certain queue of messages those
which are significant to the application or its parts.
The filtering process is due to the hierarchical concept (Application opens main

6.5. USER INTERFACE DESIGN WITH QT 79

window, main window contains GUI-Elements - e.g. Buttons- etc.), which is
depicted in Fig. 6.9.

Button . |

M ouse Pointer

Figure 6.9: Message filtering and message passing

The message passing process can be described as follows: the message is generated
by the OS (e.g. X11) and sent to the specific application - to the application of
which the main window is in an active state. The application’s message queue now
contains the system’s message. Now, the message will be hierarchically checked.
In our example in 6.9, first the elements of the main window are checked, then
the embedded elements such as the button. A click on the button was registered,
so the message is removed from the queue and the appropriate function in the
button-entity (a so called slot) is invoked.

The predescribed mechanism of message-filtering is most often not implemented
in a pure, object oriented manner. As it is not our aim to build up new user-
interface kits, we terminate the brief introduction of interface-internals here.

6.5 User Interface Design with QT

This section gives an introduction into practical user-interface programming.
First of all, we set up the main application entity - in the same manner as in
the previous section:

#include <gapplication.h>

80 CHAPTER 6. USER INTERFACES

#include <qfont.h>
#include "testgui.h"

int main(int argc, char *argv[])

{
QApplication a(argc, argv);
a.setFont (QFont ("helvetica", 12));

Mainwindow *testgui=new Mainwindow() ;
a.setMainWidget (testgui) ;

testgui->setCaption("Buttons and More");
testgui->show();

return a.exec();

As we do not deal with data-handling here, we do not need any view or document
entities. We just include our main window, which is of type MainWindow. The
class definition for simpleapp is given as follows:

#include <qwidget.h>
#include <qpushbutton.h>
#include <glcdnumber.h>
#include <qgframe.h>

class Mainwindow : public QFrame
{
Q_OBJECT
public:
Mainwindow(QWidget *parent=0, const char *name=0) ;
“Mainwindow() ;

protected:
void initDialog();
//Elements from the QT-library
QPushButton *QPushButton_Up;
QLCDNumber *QLCDNumber_1;
QPushButton *QPushButton_Down;

//For message handling
public slots:
void UpPressed();
void DownPressed();

//Data member

6.5. USER INTERFACE DESIGN WITH QT 81

public:
int m_value;

};

The interface elements are set up by the constructor (by calling initDialog()) of
Mainwindow which is given below

#include "mainwindow.h"
#include "qlcdnumber.h"

Mainwindow: :Mainwindow(QWidget *parent, const char *name)
QFrame (parent ,name)

{
//Here we first init the dialog
initDialog();
//Set additional styles
QLCDNumber_1->setSegmentStyle (QLCDNumber: :Filled) ;
//Then we connect messages to slots
connect (QPushButton_Up, SIGNAL(clicked()),
this,SLOT(UpPressed()));
connect (QPushButton_Down, SIGNAL(clicked()),
this,SLOT(DownPressed()));
//Reset data member m_value;
m_value=0;
}
Mainwindow: : “Mainwindow ()
{
}

void Mainwindow: :UpPressed()

{

//Change value

m_value++;

//Change display
QLCDNumber_1->display(m_value) ;
}

void Mainwindow: :DownPressed()

{

//Change value

m_value—-—;

//Change display
QLCDNumber_1->display(m_value) ;
}

82 CHAPTER 6. USER INTERFACES

Up Down

=

Figure 6.10: A GUI realized with QT-elements

Two important aspects can be found in the code above: the setup of the graphi-
cal user interface and in addition to that the connection of messages created by
the buttons to slots (member functions which are called after a given signal - the
message is obtained.

connect (QPushButton_Up, SIGNAL(clicked()),
this,SLOT (UpPressed()));

connect (QPushButton_Down, SIGNAL(clicked()),
this,SLOT (DownPressed()));

The following member function sets up the buttons and the LCD-display embed-
ded in the main window:

void Mainwindow::initDialog(){
this->resize(420,120);
this->setMinimumSize (0,0);
QPushButton_Up= new QPushButton(this,"NoName") ;
QPushButton_Up->setGeometry(10,10,100,90);
QPushButton_Up->setMinimumSize (0,0);
QPushButton_Up->setText ("Up");

QLCDNumber_1= new QLCDNumber (this,'"NoName");
QLCDNumber_1->setGeometry(230,10,180,90) ;
QLCDNumber_1->setMinimumSize (0,0) ;
QLCDNumber_1->display("0");

QPushButton_Down= new QPushButton(this, '"NoName") ;
QPushButton_Down->setGeometry(120,10,100,90) ;
QPushButton_Down->setMinimumSize (0,0) ;
QPushButton_Down->setText ("Down") ;

Chapter 7

A control loop simulator

This chapter deals with an example implementation of a control loop simulator.
Herein we are going to apply all the informations and knowledge we collected till
now. Our control loop simulator will be suited for sampled data systems. For this
first approach to a complex system, we assume only single input single output
systems.

Although, we are not implementing a fully dynamic user interface in the sense
that the user can select and specify tranfer function blocks, we still integrate our
control system into a dynamic structure with the meta-system and data handling
concepts which were elaborated in the previous chapters.

L] L] L

PID G(2) o

Figure 7.1: A basic control loop setup

Our aim is the simulation of structures as given in Fig. 7.1.

7.1 System theoretic approach

We are dealing with sampled data systems and thus with transfer functions in
the Z-domain' For the transfer function of a second order linear system in the

IFor the derivation of relations between Laplace and Z-domain, see Pandit [11] or Foellinger
[4]

83

84 CHAPTER 7. A CONTROL LOOP SIMULATOR

Z-domain, we obtain the following difference-equation:

y(k) +ay(k+1)+ay(k+2) = bou(k)+ byu(k — 1) + bou(k —2) (7.1)

In most real world applications, the actual value of the output of a plant y(k) in
the k-th sample step is not influenced by the input (no feedthrough). Hence we
can write:

y(k) +ary(k+1) +ay(k+2) = +bu(k —1)+ bu(k —2) (7.2)

this yields using Z-transform:

Y(2) (1 +az7" +a2z™?) = (27! + bz HU(2) (7.3)

and the resulting transfer function is given by:

Y(Z) o (blz’l + 1)2272) (7 4)
U(z) 1+az~!'+ a2 '

The output of a transfer function block in the k-th sample step is then given by:

ylk) = —ay(k—1) —ay(k —2) + byu(k — 1) + bou(k — 2) (7.5)

As in continuous time systems, the poles of the tranfer function play the most
important role with respect to stability analysis. Therefor we obtain:

blz_l + b22_2
1+ alz_l + (JQZ_Q
blz + bg

224+ a1z 4+ as

G(z) =

the poles of this transfer function are given by

2
212 = —F + — — Q9 (77)

Sampled data systems which are equivalent descriptions of stable linear continu-
ous time systems have poles with positive real parts. The stability criterion for
linear sampled data systems says, that the poles of a stable system are placed in
the unit circle.

7.1. SYSTEM THEORETIC APPROACH

Alm

Re

Figure 7.2: Poles of a linear sampled data system

As a sample setup, we select the following poles:
z = 0.8—30.2
This yields:

D(z) = (z—(0.8+30.2)(z— (0.8 —j0.2))
= (2—0.8-350.2))-(z—0.8430.2)
= 22-1.62+40.68

85

(7.8)
(7.9)

(7.10)
(7.11)
(7.12)

Using these parameters for the denominator of G(z), we design the numerator of
our plant under the assumption of a steady state amplification of 1 of the transfer
block; in steady state, all y(k+1i) = yoo with i € Ny and i << k. The same holds

for u(k + 7). Thus we can write:

ylk) = —ayy(k—1) —asy(k —2) + byu(k — 1) + bou(k — 2)

Yoo = —U1Ycc — A2Yoo + b1loe + balico

Yoo _ by + by

U Ll+ay+as

We assume by, = %bl. Then we have:

Yoo _ sb1

Usy 1 —1.6+0.68
3p
0.08

=1

(7.13)
(7.14)

(7.15)

(7.16)

86 CHAPTER 7. A CONTROL LOOP SIMULATOR

From that we obtain:

1

by — 1

! 1.875 (7.17)
— 0.053

b, = 0.0265 (7.18)

Now after designing our plant (in real applications, we obtain the model set up
previously by identifying the dynamical system from mechanical, electrical, ...
equations or by setting up physical differential equations).

In order to design the controller, we first have to set up the sampled data system
equivalents of a differentiator, an integrator and a proportional factor:

e The Differentiator can be approximated by backward differentiation:

ya(k+1) = e(k+1)—e(k) (7.19)

e The integrator is assumed as an Fuler integrator:

yi(k+1) = yi(k)+e(k+1) (7.20)

e The proportional part of the PID controller is given by a factor:

Yk +1) = K,-e(k+1) (7.21)
K
Yi
Kd
e y
—
Yd
Kp
Yp

Figure 7.3: The block diagram of a PID controller

7.1. SYSTEM THEORETIC APPROACH 87

The transfer function of the given PID controller can be derived from the transfer
functions of its parts. Therefor we obtain:

Ye(k+1) = Ky(k+1)+ Kqya(k+1) + Kpe(k + 1) (7.22)

Writing this in terms of transfer functions, we obtain:
z

Gi) = — (7.23)
Gils) = 2= 721
Gy(2) = K, (7.25)
This yields:
Y(z) = E(2) ;(Gi(z) + Gv(z) + Gp(z)j (7.26)
Ge(2)

In our design, we cancel out the poles of the second order system such that the
open loop transfer function of the circuit gives:

Go(2) = Ge(z) Gy(2) (7.28)

By comparing the numerator of the controller transfer function with the denom-
inator of the plant’s transfer function, we obtain

(K, + K, + K;) = 1 (7.29)
—(K,+2K,;) = —1.6 (7.30)
Ky, = 0.68 (7.31)
K, = 024 (7.32)
K; 0.08 (7.33)
We then obtain
1
G, = 7.34
() = (7.34
G,o(2)
G, = ——— 7.35
&)= 170 (7:35)
1
e — 7.36
22 —2z+1 (7.36)
The poles of the closed loop system are now given by:
1
e = G j? (7.37)

88 CHAPTER 7. A CONTROL LOOP SIMULATOR

7.2 Modeling and object oriented entitys

The next step in the design of our control loop simulator is setting up an appro-
priate structure. As we already discussed in chapter 4, the setup of the software
for a dynamical and block oriented control system simulator resembles the struc-
ture of the real control setup. In addition to the structure, every operator should
comprise the possibility for parametrization. The overall structure is again the
whole setup, the control loop.

7.2.1 The basic unstructured operator block

The basic unstructured operator block is built up according to the results of
chapter 4.

Operator

initialize();

execute();

showParameterDIg();

cleanup();

beforeexec();

int m_input[2]
QList<QObject>*m_mylist
| double m_output

Figure 7.4: Entity Block-Diagram of the basic control operator

The following class definition determines the structure of the generic operator as
given in Fig. 7.4.

class Operator : public (Object
{
public:
Operator () ;
virtual “Operator();

public: //Overridables
virtual void initialize();

7.2. MODELING AND OBJECT ORIENTED ENTITYS

virtual void execute();

virtual void showParameterDlg();
virtual void cleanup();

virtual void beforeexec();

public:

//Hard-coded outputs (no list as in the general case)
double m_output;
QString m_name;

//Input m_output from this operator
int m_input[2];

//The metasystem-list
QList<Q0bject> *m_mylist;
};

The implementation of the generic basis class contains empty functions:

Operator: :Operator ()
{
initialize();

}

Operator: : “Operator ()
{
cleanup() ;

}

void Operator::initialize()
{
m_output=0;
m_name="not available - base class";

}

void Operator::execute()

{}

void Operator::showParameterDlg()

{}

void Operator::cleanup()

{}

void Operator::beforeexec()

{}

89

90 CHAPTER 7. A CONTROL LOOP SIMULATOR

The basic operator does not contain any user interface functionality.

7.2.2 The Signal source

— Signal Type
“* Triangular

o ainusoidal

 Rectangular

~ Frequency

|1 rads

.

Figure 7.5: The parametrization window of the signal source

The signal source provides other operators with input signals. Three input signals
will be provided: sinusoidal, triangular and rectangular. The operator csource
inherits the basic operator-structure and overrides all of the basis functions. Its
structure is given

#define MODETRIANG O
#define MODESINE 1
#define MODERECT 2

#define DIRECTIONUP O
#define DIRECTIONDOWN 1

class CSource : public Operator
{
public:

CSource();

~“CSource();

public:
virtual void initialize(); //Override basic functionality
virtual void execute();

7.2. MODELING AND OBJECT ORIENTED ENTITYS

CSource

initialize();

execute();

showParameterDIg();

cleanup();

beforeexec();

4 N\

int m_input[2]
QList<QObject> *m_mylist
double m_output

4 Y

double m_actvalue

int m_timestep

int m_mode

int m_direction
double m_freq

SourceDlg

| |
| |
()

Figure 7.6: Entity Block-Diagram of the signal source

virtual void showParameterDlg();
virtual void cleanup();
virtual void beforeexec();

public: //internal data
double m_actvalue;

int m_timestep;
int m_mode;
double m_freq;
int m_direction;

public: //Parametrization dialog
SourceDlg m_mydlg;
s

92 CHAPTER 7. A CONTROL LOOP SIMULATOR

T

he implementation of the CSource - Entity:

CSource: :CSource()

{

}

initialize();

CSource: :~“CSource()

{

}

cleanup() ;

void CSource::initialize()

{

Operator::initialize(); //Call Baseclass

m_timestep=0;
m_freq=1;
m_mode=MODETRIANG;

}

m_direction=DIRECTIONUP;
m_name="Parametric Source";
m_mydlg.setOperator(this) ;

void CSource: :execute()

{

m_timestep++;
switch (m_mode)

{
case MODETRIANG :
{
if ((m_actvalue>100)&&(m_direction==DIRECTIONUP))
m_direction=DIRECTIONDQWN;
if ((m_actvalue<-100)&&(m_direction==DIRECTIONDOWN))
m_direction=DIRECTIONUP;
if (m_direction==DIRECTIONUP)
m_actvalue++;
else m_actvalue—-—;
m_output=m_actvalue;
break;
}
case MODESINE :
{

m_output=sin(m_freq*m_timestep/100);
break;

7.2. MODELING AND OBJECT ORIENTED ENTITYS

}
case MODERECT :

{
if ((m_actvalue>100)&&(m_direction==DIRECTIONUP))

m_direction=DIRECTIONDOWN;
if ((m_actvalue<-100)&&(m_direction==DIRECTIONDOWN))
m_direction=DIRECTIONUP;

if (m_direction==DIRECTIONUP) m_actvalue++;
else m_actvalue——;

if (m_actvalue>0) m_output=100;
else m_output=-100;

break;

}

//increment Time-step counter
m_timestep++;

Operator: :execute(); //Call Baseclass

void CSource: :showParameterDlg()
{
m_mydlg.show() ;
Operator: :showParameterDlg(); //Call Baseclass

}
void CSource::cleanup()
{
Operator: :cleanup(); //Call Baseclass
}

//Execute this before calling exec (partly initializes)
void CSource: :beforeexec()

{

Operator: :beforeexec(); //call base class
m_timestep=0;

m_output=0;

m_actvalue=0;

m_direction=DIRECTIONUP;

}

The source is parametrized through the adjoint dialog window.

93

94 CHAPTER 7. A CONTROL LOOP SIMULATOR

CScope

initialize();

execute();

showParameterDIg();

cleanup();

beforeexec();

4 N\

int m_input[2]
QList<QObject> *m_mylist
double m_output

. J

Scope
| |

| |
()

Figure 7.7: Entity Block-Diagram of the signal sink

7.2.3 The Signal sink (Oscilloscope)

class CScope : public Operator

{
public:
CScope();
“CScope() ;
public:

virtual void initialize(); //Override basic functionality
virtual void execute();

virtual void showParameterDlg();

virtual void cleanup();

virtual void beforeexec();

public:
Scope m_myscope; //Scope-screen

};

CScope: :CScope ()

7.2. MODELING AND OBJECT ORIENTED ENTITYS

{
initialize();

}

CScope: : “CScope()
{
cleanup() ;

}

void CScope::initialize()

{

Operator::initialize(); //Call Baseclass
m_name="0Oscilloscope Screen";

m_myscope .RemoveValues () ;

}

void CScope::execute()
{
double value=((Operator*)m_mylist->at(m_input[0]))->m_output;
m_myscope . AppendValue (value) ;
m_myscope.update () ;
Operator: :execute(); //Call Baseclass

}

void CScope: :showParameterDlg()
{

m_myscope .show() ;

Operator: :showParameterDlg(); //Call Baseclass
}

void CScope::cleanup()
{

Operator::cleanup(); //Call Baseclass
}

//Execute this before calling exec (partly initializes)
void CScope: :beforeexec()

{

Operator: :beforeexec(); //call base class

m_myscope .RemoveValues(); //Cleanup Scope

}

7.2.4 The PID controller

class CPIDController : public Operator

96 CHAPTER 7. A CONTROL LOOP SIMULATOR

[EE

|

| |
| |
| |
| |
| |
i I
| |
| |
| |
|
| |
| |
| |
| |
| |
r r
| |
| |
| |
| |
| |
| |
| |
| |
| |
j i
| |
| |
| |
|
| |
| |
| |
| |
| |

[e

500 500

Figure 7.8: The signal sink - a dynamic oscilloscope screen

2|

—

[EE

— Controller Parameters

Kp |0
Ki |0
ke |0

Figure 7.9: parametrization of the PID controller

public:
CPIDController();
~“CPIDController();

public:
virtual void initialize(); //Override basic functionality
virtual void execute();

7.2. MODELING AND OBJECT ORIENTED ENTITYS

CPlant

initialize();

execute();

showParameterDIg();

cleanup();

beforeexec();

4 N\

int m_input[2]
QList<QObject> *m_mylist
double m_output

[double m_yvalues2]
double m_uvalueg[2]
doublem_al,m a2
| doublem_bl,m_h2

PlantDlg
| |

[)

Figure 7.10: Entity Block-Diagram of the PID-controller

virtual void showParameterDlg() ;
virtual void cleanup();
virtual void beforeexec();

public:
double m_integral;
double m_evalues[2];
double m_kp,m_ki,m_kd;
public:
PidDlg m_mydlg;
};

Implementation:

CPIDController: :CPIDController()

97

9

{

}

C
{

}

v

{

8 CHAPTER 7. A CONTROL LOOP SIMULATOR

initialize();

PIDController::~“CPIDController()

cleanup() ;

oid CPIDController::initialize()

Operator::initialize(); //Call Baseclass
m_name="PID-Controller";

m_evalues[0]=0;

m_evalues[1]=0;

m_kp=0.1;

m_kd=0;

m_ki=0.1;

m_integral=0;

m_mydlg.setOperator (this) ;

void CPIDController: :execute()

{

//The difference-equation of the plant
//out=kp*e(t) + ki *integral(e(t))+ kd*differential(e(t))

//First shift e’s

for(int i=0;i<1;i++)

{

m_evalues[i+1]=m_evalues[i];

}

//Get actual control error value
m_evalues[0]=((0Operator*)m_mylist->at(m_input [0]))->m_output;
//Integrate control error

m_integral+=m_evalues[0];

m_output=m_kp*m_evalues [0]+
m_kd*(m_evalues[0]-m_evalues[1])+

m_ki*m_integral;

Operator: :execute(); //Call Baseclass

}

void CPIDController::showParameterDlg()
{

m_mydlg.show();

7.2. MODELING AND OBJECT ORIENTED ENTITYS

Operator: :showParameterDlg(); //Call Baseclass
}

void CPIDController::cleanup()
{

Operator::cleanup(); //Call Baseclass
}

//Execute this before calling exec (partly initializes)
void CPIDController: :beforeexec()

{

Operator: :beforeexec(); //call base class
m_evalues[0]=0;

m_evalues[1]=0;

m_integral=0; //Reset Integrator

}

7.2.5 The Plant model

Transfer function: B(gi/aq)

- Al - Big)
= = = -
Algi=1 + alg + aZq Blp=b1gq + hZq
al [-0.4 b1 {1
ag |0 bz |0

Figure 7.11: Configuration of the transfer function window

class CPlant : public Operator

{
public:
CPlant();
~“CPlant();
public:

virtual void initialize(); //Override basic functionality
virtual void execute();

100 CHAPTER 7. A CONTROL LOOP SIMULATOR

CPlant

initialize();

execute();

showParameterDIg();

cleanup();

beforeexec();

4 Y

int m_input[2]
QList<QObject> *m_mylist

[double m_yvalues[2]
double m_uvalueg2]
doublem _al,m a2
\ doublem_bl,m_h2

PlantDIg
| |

[)

Figure 7.12: Entity Block-Diagram of the plant model

virtual void showParameterDlg() ;
virtual void cleanup();
virtual void beforeexec();

public:
double m_yvalues[2];
double m_uvalues[2];
double m_al,m_a2,m_bl,m_b2;

public:
PlantDlg m_mydlg;
s

Implementation of the plant model:

CPlant: :CPlant ()
{

7.2. MODELING AND OBJECT ORIENTED ENTITYS

initialize();

}
CPlant::~CPlant ()
{

cleanup();
}

void CPlant::initialize()

{

Operator::initialize(); //Call Baseclass
m_name="PT2-System";
m_yvalues[0]=0;
m_yvalues[1]=0;
m_uvalues[0]=0;
m_uvalues[1]=0;

m_al=-0.8;

m_a2=0;

m_bl=1;

m_b2=0;
m_mydlg.setOperator(this);

void CPlant::execute()

{
//The difference-equation of the plant
//y(t)+alxy(t-1)+a2*y (t-2)=blxu(t-1)+b2*u(t-2)
//y(t)=blxu(t-1)+b2*u(t-2)-al*xy(t-1)-a2*y(t-2)

//First shift u’s and y’s
for(int i=0;i<1;i++)

{

m_yvalues[i+1]=m_yvalues[i];
m_uvalues[i+1]=m_uvalues[i];
}

//Insert input and last output

m_output=-m_al*m_yvalues[0]-m_a2*m_yvalues[1]+
m_bl*m_uvalues[0]+m_b2*m_uvalues[1];

m_yvalues[0]=m_output;
m_uvalues [0]=((Operator*)m_mylist->at(m_input[0]))->m_output;

Operator: :execute(); //Call Baseclass

101

102 CHAPTER 7. A CONTROL LOOP SIMULATOR

void CPlant::showParameterDlg()
{
m_mydlg.show();
Operator: :showParameterDlg(); //Call Baseclass

}
void CPlant::cleanup()
{
Operator::cleanup(); //Call Baseclass
}

//Execute this before calling exec (partly initializes)
void CPlant::beforeexec()

{

Operator::beforeexec(); //call base class
m_yvalues[0]=0;

m_yvalues[1]=0;

m_uvalues[0]=0;

m_uvalues[1]=0; //Reset stored values

¥

7.2.6 The sum point

Figure 7.13: Parametrization for the summation point

class CSumPoint : public Operator
{
public:
CSumPoint () ;
~“CSumPoint () ;
virtual void initialize(); //Override basic functionality

7.2. MODELING AND OBJECT ORIENTED ENTITYS

CSumPoint

initialize();

execute();

showParameterDIg();

cleanup();

beforeexec();

int m_input[2]
QList<QObject> *m_mylist
double m_output

.

AdditionDlg

[

Figure 7.14: The entity diagram for the sumpoint operator

virtual
virtual
virtual
virtual

void execute();

void showParameterDlg();
void cleanup();

void beforeexec();

public:
AdditionDlg m_mydlg;
int m_yvalues[3];
int m_uvalues[3];
int m_sign[2];

+;

CSumPoint: :CSumPoint ()
{
initialize();

}

CSumPoint: : “CSumPoint ()
{

103

104 CHAPTER 7. A CONTROL LOOP SIMULATOR

cleanup() ;

}

void CSumPoint::initialize()

{

Operator::initialize(); //Call Baseclass
m_name="Summation Point";

m_sign[0]=+1; //Set Signs

m_sign[1]=-1;

m_mydlg.setOperator(this);

}

void CSumPoint: :execute()

{
double valuel=((Operator*)m_mylist->at(m_input[0]))->m_output;
double value2=((0Operator*)m_mylist->at(m_input[1]))->m_output;

m_output=m_sign[0]*valuel+m_sign[1]*value2;
Operator: :execute(); //Call Baseclass

void CSumPoint: :showParameterDlg()
{

m_mydlg.show() ;

Operator: :showParameterDlg(); //Call Baseclass
}

void CSumPoint::cleanup()

{
Operator::cleanup(); //Call Baseclass

}

//Execute this before calling exec (partly initializes)
void CSumPoint: :beforeexec()

{

Operator: :beforeexec(); //call base class

m_output=0;

}

7.2.7 Meta System Construction

The meta system for the control loop simulator has to execute the operators
operation kernel, to initialize the operators and to cleanup after stopping the
simulation. The execution is performed using the framework of an object oriented
list containing the operator blocks ad furthermore using the concepts of dynamic
coupling of the operators by providing the operators with a pointer to the operator

7.2. MODELING AND OBJECT ORIENTED ENTITYS 105

list and by providing the index of the operator in the list of which the parameters
have to be retrieved. Figure 7.15 shows the structure.

CObjectList

¢

¢

CNode:Nodel

S

A Y

CNode:Node2

[

lw

CNode:Node3

|)

CNode:Noded

¢

¢

Y

'

CSource: CScope: CSumPoint: CPIDControll.
Sourcel Scopel SumPoint1 PID1

[1] [1] [| | |
[1] [1] I | | |

Figure 7.15: Entity Block-Diagram of the meta system

class Simulator : public QWidget

{
Q_OBJECT
public:
Simulator(QWidget *parent=0, const char *name=0) ;
“Simulator();

protected:
void initDialog();

QSpinBox *QSpinBox_1;

QLabel *QLabel_1;

QPushButton *QPushButton_run;
QListBox *QListBox_1;

protected:
void paintEvent(QPaintEvent* Event);

public:
QPixmap m_Blockdiag;

106 CHAPTER 7. A CONTROL LOOP SIMULATOR

//The list for execution of the operators
QList<0Operator> m_Operatorlist;

bool m_wasstopped;
QTimer m_timer;

int m_timesteps;
int m_length;

public slots:
void Simulength();
void Runandstop();
void ShowConfDialog();
void execSlot();

+;
The implementation

Simulator::Simulator(QWidget *parent, const char *name)
: QWidget (parent ,name)
{
initDialog();

//Load Image
m_Blockdiag.load("../ctrllpsim.pnm");

//Hard-wired control loop simulator
m_Operatorlist.setAutoDelete (TRUE) ;

//This functionality would be handled by the user-interface in the
//fully dynamical case (creates hard-wired control loop)

CSource* m_source=new(CSource) ;

CSumPoint* m_sumpoint=new(CSumPoint) ;

CPIDController* m_Pidcontroller=new(CPIDController);

CPlant* m_plant=new(CPlant);

CScope* m_scopel=new(CScope) ;

CScope* m_scope2=new (CScope) ;

CScope* m_scope3=new(CScope) ;

//Insert into interpreted list
m_Operatorlist.append(m_source) ;
m_Operatorlist.append(m_sumpoint) ;
m_Operatorlist.append(m_Pidcontroller) ;
m_Operatorlist.append(m_plant);
m_Operatorlist.append(m_scopel);
m_Operatorlist.append(m_scope2) ;
m_Operatorlist.append(m_scope3);

7.2. MODELING AND OBJECT ORIENTED ENTITYS 107

//Make m_Operatorlist known to blocks
m_source->m_mylist=(QList<Q0bject>*)&m_Operatorlist;
m_sumpoint->m_mylist=(QList<Q0bject>*)&m_Operatorlist;
m_Pidcontroller->m_mylist=(QList<Q0bject>*)&m_0Operatorlist;
m_plant->m_mylist=(QList<Q0bject>*)&m_Operatorlist;
m_scopel->m_mylist=(QList<Q0bject>#*)&m_Operatorlist;
m_scope2->m_mylist=(QList<Q0bject>*)&m_Operatorlist;
m_scope3->m_mylist=(QList<Q0bject>*)&m_Operatorlist;

//Make connections between blocks
m_sumpoint->m_input [0]=0; //output from source
m_sumpoint->m_input [1]=3; //output from plant

m_Pidcontroller->m_input[0]=1; //output from sumpoint
m_Pidcontroller->m_input[1]=0; //not connected

m_plant->m_input [0]=2; //output from controller
m_plant->m_input[1]=0; //not connected

m_scopel->m_input [0]=0; //Output from generator
m_scopel->m_input[1]1=0; //not connected

m_scope2->m_input [0]=2; //Output from controller
m_scope2->m_input[1]1=0; //not connected

m_scope3->m_input [0]=3; //Output from plant
m_scope3->m_input [1]=0; //not connected

//Insert Items in ListBox

unsigned int i;

for (i=0;i<m_Operatorlist.count();i++)

{
//Insert from inside operator
QListBox_1->insertItem(m_Operatorlist.at(i)->m_name,i);

}

//Create a timer for periodic execution
m_timer.start(10,FALSE); //Start timer

//Set initial number of timesteps
m_length=1000;
QSpinBox_1->setValue(m_length);

//Connection of Slots
connect (QSpinBox_1,SIGNAL(valueChanged(int)),this,SLOT(Simulength()));
connect (QPushButton_run,SIGNAL(clicked()),this,SLOT(Runandstop()));

108 CHAPTER 7. A CONTROL LOOP SIMULATOR

connect (QListBox_1,SIGNAL (selected(int)) ,this,SLOT(ShowConfDialog()));
connect (&m_timer,SIGNAL (timeout ()) ,this,SLOT (execSlot()));

m_wasstopped=TRUE;
}

Simulator::~Simulator()
{

unsigned int ij;

//Stop execution
m_wasstopped=TRUE;

//Stop Timer
m_timer.start (50,FALSE);

//Remove list and entries (due to autodelete)
for (i=0;i<m_Operatorlist.count () ;i++)
m_Operatorlist.removelLast();

}

void Simulator::paintEvent (QPaintEvent* Event)

{

QPainter paint(this);

paint.drawPixmap (10,55, m_Blockdiag,0,0,-1,-1);
}

//User-Interface functionality
void Simulator::Simulength()

{
m_length=QSpinBox_1->value() ;
}

The following program code is also part of the meta system. Herein the operators
are prepared and made “ready to run”:

void Simulator: :Runandstop()
{
unsigned int ij;
if (QPushButton_run->is0n())
{
if (m_wasstopped==TRUE)
{
for (i=0;i<m_Operatorlist.count();i++)
{
m_Operatorlist.at(i)->beforeexec(); //Prepare for execution
m_timesteps=0;

}

7.2. MODELING AND OBJECT ORIENTED ENTITYS 109

m_wasstopped=FALSE;
}
3

else

{
m_wasstopped=TRUE;

}
}

We introduced user interface dialogs for the configuration of the operator blocks.
These configuration windows are opened if the respective operator is selected in
the simulator’s main window:

void Simulator::ShowConfDialog()
{

int index=QListBox_1->currentItem();

if (index>-1) //nothing selected ?
m_Operatorlist.at(index)->showParameterDlg(); //Open Parameter window

The following routine is executed using a timer triggering. Actually for simulation
purposes, it could also be executed in a cyclic manner. The timer method however
allows to change the processor load by decreasing or increasing the timer intervals.
In this routine, one can see that the execute(); member function of the operator
blocks is called for all of the operators of the list.

/** Timer shot */

void Simulator::execSlot()

{
unsigned int i;
if ((m_wasstopped==FALSE)&&(m_timesteps<m_length))

{
for (i=0;i<m_Operatorlist.count();i++)
{
m_Operatorlist.at(i)->execute(); //Execute Operators
}
}
if (m_timesteps>=m_length)
{
QPushButton_run->set0n(FALSE) ;
Runandstop() ;
}

m_timesteps++;

¥

110 CHAPTER 7. A CONTROL LOOP SIMULATOR

7.3 The User Interface

The construction of the User Interface will be shown only for one example, the
scope window.

Scope

| initDialog(); |

paintEvent();

AppendVaue();

RemoveValues();

| |
| |
| SliderX moved(): |
| |

SliderY moved();

Vauenode* m_node
QList<Vauenode> *m_scopelist
double m_min,m_max

int m_Yrange, m_Xrange
intm_Xmin, m_Ymin

QSlider *QSlider_Y ,*QSlider_X

Figure 7.16: Entity Block-Diagram of the scope entity (user interface for CScope)
Definition:

class Scope : public QWidget {
Q_0BJECT

public:
Scope(QWidget *parent=0, const char *name=0);

“Scope () ;

protected:
void initDialog();

QSlider *QSlider_Y;
QSlider *QSlider_X;

protected:
void paintEvent(QPaintEvent* myEvent) ;

public:

7.3. THE USER INTERFACE 111

//Contains a QList
QList<Valuenode> m_scopelist;
Valuenode* m_node;

//Set maximum possible values
void Setmaxvalues();
void setSliderRanges();

public slots:
void AppendValue(double value);
void RemoveValues();
void SliderXmoved();
void SliderYmoved();

public:
double m_min;
double m_max;

int m_Yrange;
int m_Ymin;
int m_Xrange;
int m_Xmin;

};
Implementation:

Scope: :Scope(QWidget *parent, const char *name) : QWidget(parent,name)
{

int 1i;

initDialog() ;

//Setze Werte m_min und m_max
m_min=+10E10;

m_max=-10E10;

//Setze richtige Werte fiir Slider
setSliderRanges() ;

//Allow auto-deletion of List-elements

m_scopelist.setAutoDelete(TRUE);

//Alle Events verbinden
connect (QSlider_Y, SIGNAL(valueChanged(int)), this, SLOT(SliderXmoved()));
connect (QSlider_X, SIGNAL(valueChanged(int)), this, SLOT(SliderYmoved()));

112 CHAPTER 7. A CONTROL LOOP SIMULATOR

Scope: :“Scope()
{
}

//Paint the values according to settings
void Scope::paintEvent (QPaintEvent* myEvent)
{

int i;

//QWidget: :paintEvent (myEvent) ;

QPainter paint(this);

//Make Background black
QBrush blackbrush(black);
paint.fillRect(10,10,560,380, blackbrush) ;

//First calculate Scaling factors

QPen yellowpen(yellow) ;
yellowpen.setWidth(2);

paint.setPen(yellowpen) ;

int startx=QSlider_X->value();
int stopx=QSlider_X->value()+560;

int maxy=QSlider_Y->value()+380/2;
int miny=QSlider_Y->value()-380/2;

double value;
bool move=FALSE;

//Do not access beyond end of list
if (stopx>m_scopelist.count()) stopx=m_scopelist.count();

for(i=startx;i<stopx;i++)
{
value=m_scopelist.at(i)->m_value;
if (i==startx)
{
paint.moveTo(10,10+380/2-value+QSlider_Y->value());
}
else
{
//Check for Y-Range
if ((value>maxy) || (value<miny))

7.3. THE USER INTERFACE 113

{
move=TRUE;
paint.moveTo(10+i-startx,10+380/2-value+QSlider_Y->value());
}
else
{
if (move==FALSE)
{
paint.lineTo(10+i-startx,10+380/2-value+QSlider_Y->value());
}
else
{
paint.moveTo(10+i-startx,10+380/2-value+QSlider_Y->value());
move=FALSE;
}
}

}

//Finally draw lines and write values
QPen graypen(gray);
graypen.setStyle(DashLine) ;
paint.setPen(graypen) ;

QString string;

//Horizontal grid

i=50;

while (i<380)

{
string.setNum(190-i+QSlider_Y->value());
paint.drawText(0,i-5,80,20, AlignRight,string,-1,0,0);
paint.moveTo(10,10+1);
paint.lineTo(570,10+1);

i+=100;

}

//Vertical Grid

i=100;

while (1i<560)

{
string.setNum(i+QSlider_X->value());
paint.drawText (i-40,370,80,20, AlignRight,string,-1,0,0);
paint.moveTo(10+i,10);
paint.lineTo(10+i,390);
i+=100;

}

114 CHAPTER 7. A CONTROL LOOP SIMULATOR

//Add a value to storage
void Scope: :AppendValue(double value)
{
Valuenode* m_myvalue;
m_myvalue=new Valuenode(value);
m_scopelist.append(m_myvalue) ;
if (m_scopelist.last()->m_value<m_min)
m_min=m_scopelist.last()->m_value;
if (m_scopelist.last()->m_value>m_max)
m_max=m_scopelist.last()->m_value;
setSliderRanges();

//Remove stored values
void Scope::RemoveValues()
{

while (m_scopelist.count()>0)
{
m_scopelist.removelLast () ;
}
}

//SliderX moved

void Scope::SliderXmoved()
{

update() ;

}

//SliderY moved

void Scope::SliderYmoved()
{

update () ;

}

//Set maximum possible values
void Scope::Setmaxvalues()

{

}

void Scope::setSliderRanges()

{

QSlider_X->setRange (0,m_scopelist.count());
QSlider_Y->setRange(m_min,m_max) ;

}

7.4. EXTENSIONS FOR THE FULLY DYNAMICAL CASE 115

Parametric Source
Summation Point
PID-Controller

PT2-5ystem
Oscilloscope Screen
Oscilloscope Screen

Oscilloscope Screen

—|_|—|_ - PID - G(z)

Run

Mo, of Timesteps

R

Figure 7.17: The user interface of the control loop simulator

7.4 Extensions for the fully dynamical case

The presented control loop simulator shows in principle how one could give a
meaningful and dynamic structure to a signal processing system and how a com-
plex system can be built up. However the selected approach is not fully dynamic.
That is due to the non dynamic outputs and the constraints given by the user
interface.

The fully dynamic approach comprises:
e A fully dynamic user interface as a part of the meta system
e Fully dynamic output handling of the blocks (list based)

However, with the knowledge of the previous chapters, the reader should be ca-
pable of extending the given platform according to his or her needs.

116 CHAPTER 7. A CONTROL LOOP SIMULATOR

Chapter 8

Realtime systems and
Multitasking

Before we can talk about real time systems, we have to clarify what the expres-
sion real time means. The most frequently occuring mistake is, that application
designers talk about speed and mean realtime or vice versa. In fact, realtime can
be slow and does not at all refer to speeds at all. The expression “realtime” only
specifies, that a certain sample time is kept stable and stationary.

This is a very important factor, especially if we develop basis systems for higher

level control systems. Especially learning or adaptive systems require a stable
sampling interval.

X(®) | x(kT)

Y

T 2T 3T 4T t

Figure 8.1: Sampling with a realtime system

8.1 The necessity of Realtime

To find out why we definitely need real time for certain classes of systems - espe-
cially in control and signal processing we must analyze the effect of non realtime
i.e. a time varying sample time on the underlying plant- or system-dynamics.

117

118 CHAPTER 8. REALTIME SYSTEMS AND MULTITASKING

First we recollect: real-time means aequidistant sampling. Especially for A/D or
D/A-conversion containing applications, realtime is a very necessary aspect.

X(@®) | x(KT)
/—\
| _

0.5T 2.5T 4l t
3T

Figure 8.2: Sampling with a nonrealtime system, although the system reacts
faster than required, its reaction time is not predictable and thus we cannot use
it for e.g. control- or signal-processing purposes.

The possibility of guaranteeing real-time by using an adequate hardware and
buffering the sampled values is only possible if we consider open loop systems
with offline signal processing such as iterative learning control systems. For on-
line control systems, a hard real-time for the whole system (except for the user-
interface) is necessary.

The system will be fed with the output of a zero-order hold equivalent of a
sequence which is the plant’s input u(t) (as you can see in Fig. 8.3)

L
.

Figure 8.3: A continuous linear time-invariant state space system

This necessity will be traced in a more mathematical manner in the following
example.

Example: A general way to show the effect of time-varying sample times can
be shown using a continuous 2nd-order dynamical system - a type of dynamical
system with which we have to deal in most control system applications:

8.1. THE NECESSITY OF REALTIME 119

x(t) = Ax(t)+ bu(t) (8.1)
y(t) = <'x(1)

Further, the system has to be SISO (single input, single output).

u(t)
— ———
/\N\ y(®)

Figure 8.4: A continuous linear time-invariant state space system

For A, b nd ¢, we select:

A = (L5 0;11 (8.3)
b = E?O) |) (8.4)
" = (05 02) (8.5)

this is an overdamped system with poles —0.9 and —2 in the left half plane. For
a unique sampling rate, we obtain:

®(T,) = Al (8.6)
H(T,) = A7'[A-1]B (8.7)

Using this approach, one has obtained the state-space representation of the sam-
pled data system:

x(k+1) = ®x(k)+ Hu(k) (8
y(k) = <'x(k) (8

From equation 8.6 one gets a clear impression how the sampling time influences
the matrices and hence the eigenvalues of a sampled data system. This is an
important fact as e.g. a discrete state space controller which was once developed
for a certain system is - under the assumption of a varying 7, - now operating
on a time varying system which can cause instability or more probable will cause
bad control action and system behaviour with respect to desired dynamics.

8)
9)

Especially “higher” control algorithms as iterative learning or predictive control or
as well adaptive control - generally speaking all dynamic control algorithms which

120 CHAPTER 8. REALTIME SYSTEMS AND MULTITASKING

0.25

0.2t o 8

0.1l o |

0.05F b

o il

0 5 10 15 20 25 30 35 40 45 50

Figure 8.5: A continuous linear time-invariant state space system sampled at
different increments of time. Every stem shows the increment 7" for the actual
sampling step

use system models or specific properties of the controlled system or identification
algorithms will be endangered by using unstable sample-time sampling.

The following matlab-code simulates the time-varying sample time and calculates
the eigenvalues for the aequivalent sampled data system for the system given
above:

%% Cleanup first
close all
clear all

%% Definition for a continuous time system

A=[-1.5 0.11; 0 -3]
b=[0;1]

c=[0.5 0.2]

d=0

%% Basis-Sample Time 0.1 sec
Ta=0.1

hhDeterioration of Sampling rate through gaussian noise
noise=(Ta/2)*randn(50,1);

noise=noise.*(noise>-Ta); ‘avoid negative sampling times
Samplingtime=Ta+noise;

8.2. PROVISION OF REAL TIME IN PRACTICE 121

for i=1:50,
[Phinew,Hnew] = c2d(A,b,Samplingtime(i,1));
eigenvalsnew = eig(Phinew);
eigenvals = [eigenvals eigenvalsneu] ;
H = [H Hnew];
end
figure(1);

stem(eigenvals(1,:)’)

figure(2);
stem(eigenvals(2,:)’)

figure(3);
stem(Samplingtime)

One might argument, that if we knew the sample-time or at least the time at the
instants when the sample was taken, we could “repair” these effects by e.g. inter-
polation or by designing a special controller - although this is possible for linear
systems, the problem is that this does not work for general systems and further
time-varying systems sometimes require special treatment. From the technical
point of view such workarounds are not at all supportable: for difficult plant-
dynamics we need higher level control systems with a clean realtime basis.

8.2 Provision of real time in practice

The easiest way to build up a realtime system is not to use any preemtive multi-
tasking systems. One could e.g. use DOS and as programming language C with
RT-Kernel, a realtime scheduler extension.

As only one user can work at the same time, the computational load is determin-
istic and can be predetermined. The realtime extension takes over the interrupt
handling and all device I/O. Thus, the whole system ressources are reserved for
one process (containing one or more tasks with different priorities).

Another possibility is to use a special software-kit which provides realtime. There
are different kits provided for all platforms. Though all of them promise best real-
time performance, many of these kits have to face strong limitations which are
partly created by the kit itself, partly by the underlying OS. If e.g. message
queues can overflow or harddisk access is delayed extremely, the underlying OS
is not well suited to realtime applications, even with an additional kit. Suitable
solutions are e.g. RTLinux as a special low level Linux Kernel realtime environ-
ment or RTKernel for DOS.

122 CHAPTER 8. REALTIME SYSTEMS AND MULTITASKING

©
0.91 o) ? ° o
Q
0] o O ¢ 0P0 00 ® (0]

08| o o7 7 ERAREE
0.7t .
0.6 i
05f 8
0.4f .
03 8
0.2f 8

0.1+ b

0

1

0.9 © Q B
0.8f o] [olo] ol
o9 o}
0.7 ¢ @ 090 o9 ° b
0.6 b
0.5F b
0.4+ B
0.3F b

0.2 b

0.1+ b

0
0 5 10 15 20 25 30 35 40 45 50

Figure 8.6: Top: first eigenvalue of the sampled data system, bottom: second
eigenvalue of this system (in the sampled data domain) - these values differ for
every sample step due to changes in sample time

8.3 Multitasking

In order to provide real time, multitasking is a versatile tool. Generally, we dis-
tinguish between two different types of multitasking: cooperative and preemtive
multitasking.

8.3. MULTITASKING 123

8.3.1 Cooperative Multitasking

In cooperative multitasking, the tasks have to co-operate; this aspect is as well
advantageous as disadvantageous because if one task hangs (has entered a dead-

lock state), the execution of the whole program will be stopped and the system
will fail.

o
R} c
T = =
o =] o
2 2 8 3
= s 2
a o Y— o
f—
2 = [T
@ £ =
e - —_ =
o >
o = s o
Y c 17 —
wn o =] 8
I<h) o
S Py E =
— 2 o 401
[< Pt (&)
= = - =
= S T S
o
I L S <
Qo < o S @)
o O x O
@
e
=
|
@
3]
-
Y
—
t
‘ >
Ta

Figure 8.7: Timing and cooperative Multitasking

The advantage is, that we do not need to worry about unwanted task changes
and timing can be fixed in a deterministic manner.

We can thus plan the algorithms in separately from each other and evaluate the
timings for each of these in order to determine the overall duration and also the
lowest possible sampling time 7' regarding the algorithms.

Example: We have to acquire data from an analogous to digital converter board.
The board data then has to be integrated and communicated back to the board,
where it is reconverted to the analog domain and fed to the plant.

This data processing has to be done in parallel to user input processing and eval-
uation.

For the given setting, we can easily determine timings and derive the maximum
sample rate which is possible for a given amount of calculation power.

e Assume a maximum time delay of 0.2ms for the A/D-Board to get ready:

124 CHAPTER 8. REALTIME SYSTEMS AND MULTITASKING

START

/ DRDY \
Yes No

¢

Acquire
Data

¢

Sleep

Figure 8.8: The flowcharts of the data-acquisition task (DRDY=data ready)

START

H

Integrate
Value

¢

Sleep

Figure 8.9: The flowcharts of the integration task

71 =0.2-10"3
e The acquisition routine takes (in our example) 7, = 0.01 - 10735
e Let the keyboard task consume about 73 = 0.05 - 103s

For the overall execution time, we obtain:

8.3. MULTITASKING 125

START

H

Writeto
DAC

¢

Sleep

Figure 8.10: The flowcharts of the data-output task

START

/ KEYBD \
Other E

Sleep

Figure 8.11: The flowcharts of the main and keyboard task (KEYBD=keyboard)

3
T o=) 7 =207ms (8.10)

i=1

The minimum sample time for which we can guarantee, that the algorithm
does keep all provided samples and stays in the given sampling time raster is
T = 2.1ms.

In many cases, this approach yields good results. One problem is however, that
the structure of this kind of multitasking systems is not at all flexible and beyond
a certain level of complexibility, time consuming processes have to be broken into
less complicated pieces.

126 CHAPTER 8. REALTIME SYSTEMS AND MULTITASKING

8.3.2 Preemtive Multi tasking

A more general approach which is in fact more flexible but also more difficult
concerning its handling and also creates more processor load is preemtive multi
tasking.

The given example problem can also be treated using cooperative multitasking.
Preemtive multitasking is a higher developped multi tasking based on a sched-
uler that decides whether a certain task is running or not and is also allowed to
interrupt tasks at every point of time.

The differences between cooperative and preemtive multitasking can be classified
as follows:

A system for preemtive multitasking contains a scheduler. The scheduler is al-
lowed to stop execution of a task and to continue with the execution of another
task without the “cooperation” of the task being stopped.

A simple preemtive multitasking scheduler usually needs the following informa-
tions for execution of the tasks:

e the priority of a task
e the status of a task (ready to run, blocked, waiting, ...

e Interruptibility

The scheduler derives from these informations whether to interrupt a task or to
continue the execution of another task.

Preemtive multitasking requires in addition to the presented data a more com-
plicated structuring of variable handling and inter-task communication. Using
cooperative multi tasking, it is still possible to use e.g. global variables for data-
exchange. In preemtive multitasking that cannot be afforded.

Example: Assume two tasks, both using a certain global variable.

The first task has to do some calculations:

TASK taskl

{
//Initialization part
a=0;

//Execution part
while (1)
{

8.3. MULTITASKING 127

a=a+5b;

a=a-2;

result=a;
//Give back to scheduler
//explicityl
sleep();
}
}

The second task uses the results of calculations of the first task:

TASK task?2
{

//Initialization part

//Execution part
while (1)
{

at=1;

a=a-2;

printf(a);
//Give back to scheduler
//explicityl
sleep();
}
}

The global variable a which is used as a means of communication would not cause
problems if used in a cooperative multitasking environment (see Fig. 8.12).
Using preemtive multitasking, task 1 could be interrupted by the scheduler and
the execution could be continued in task 2 (due to the overall state of the mul-
titasking system). In this case, once reactivated, task 1 would continue its cal-
culations using wrong values (a has changed meanwhile). There are - generally
speaking - two possibilites to overcome this problem:

128 CHAPTER 8. REALTIME SYSTEMS AND MULTITASKING

Task 1 Task 2

—
t

Figure 8.12: Task 1 and 2 and their timing using cooperative multitasking

e (ritical sections

e Semaphores and flags

Critical sections are pieces of program code of which execution must not be
interrupted by the scheduler. Critical sections are a step back into the direction
of cooperative multitasking. Critical sections are usually implemented in tasks
which handle protocols with hardware components and of which interruption is
not allowed. For the predescribed problem, the second solution - semaphores and
flags - are used. Inter-task communication can be made “multitasking”-safe using
this method of blocking task changes:

TASK taskil
{

//Initialization part
a=0;

signal (twoready); //Signal yourself
//Execution part
while (1)
{
wait (twoready) ;
a=a+t+h;

result=a;

signal (oneready) ;
}
}

The second task again uses the results of calculations of the first task but now
waits for the flag oneready:

8.3. MULTITASKING

TASK task?2

{

//Initialization part

//Execution part
while(1)
{
wait (oneready) ;
at=1;

a=a-2;

printf(a);
signal (twoready) ;

}

129

In the previous code, communication was again performed using global variables.

Now we use semaphores for the same problem:

TASK taskil

{

//Initialization part
int a=0;

sematwo->value=0;
send (sematwo) ;

//Execution part
while(1)
{
wait (sematwo) ;
a=sematwo->value;

a=a+bh;

a=a-2;

130 CHAPTER 8. REALTIME SYSTEMS AND MULTITASKING

semaone->value=a;
send (semaone) ;
}

}

The second task evaluates the contents of the semaphore sent by the first task
and uses local variables for its calculations only.

TASK task2
{

//Initialization part

int b=0;

//Execution part

while(1)

{
wait (semaone) ;
b=semaone->value;
b+=1;

b=b-2;

sematwo->value=b;
send (sematwo) ;

}

8.4 Approach using embedded Systems or Net-
work Connections

Real-time can be provided by both, an appropriate software and - also possible
- a specific hardware. These approaches are concerning their aim and results
aequivalent but different in price.

The hardware-approach is more expensive because one needs “intelligent” hard-
ware; most often this will be an embedded system (embedded board). An em-
bedded system board uses its own operating system which is realtime capable
and also contains its own processor. In embedded systems, the realtime compo-
nent (the embedded component) takes full control of all necessary realtime tasks.
Visualization itself is performed by another programme which is running on a

8.4. APPROACH USING EMBEDDED SYSTEMS OR NETWORK CONNECTIONS131

graphical operation system on the embedding PC.

Control and Signal—Processing system

ﬁ

= Embedded system (with RT-0S)
\ Bus or

— ()

— O LI L] O

— memory L "

/—_\:\ mapped 1/O

Embedding system with GUI

Q

Plant (Actuators and Sensors)

— Gl(s) e Gz(s) S

Figure 8.13: The informational structure of an embedded system

The coupling between both systems is realized using the ISA or PCI-bus. The
communication with the realtime board can be done using either dual ported
memory or by directly reading from the board. For visualization purposes, most
of the data has to be stored on the board before it is then fetched for visualization
by the embedding system.

Another possibility is to connect the realtime part of the system is using a network
connection. This yields the same results as the previously discussed solution.

132 CHAPTER 8. REALTIME SYSTEMS AND MULTITASKING

Chapter 9

Application Testing, Soft- and
Hardware Approach

After an application or a complex software system has been realized and imple-
mented, it is necessary to find out whether it works under the conditions specified
in advance and to make it bug free. Assuming that our aim is not to sell bugs as
features, we have to assure a very high precision concerning error-freeness of our
system. Although the step in development which is described in this chapter is
one of the last steps in software/systems-design, it is one of the most important
steps.

One problem is, that the whole testing process does not yield anything besides
error-freeness. Many developers do in fact not see, that a program which is work-
ing in 85% of the specified cases is worse than no program. Especially in process
control and all other industrial processes, a 100% solution is required.

9.1 Aspects of Testing Systems

As we have assumed in the previous chapters, our aim is the development of a
more or less complicated system-structure for automization purposes. It is obvi-
ous, that the resulting software cannot be tested as a text-processing program.
For a successful test, we have to include all components which occur in the final
system.

However, one problem is, that e.g. the testing of a signal processing environment
with a signal-acquisition card cannot be done on a single computer system. For
that purpose, one has to set up a whole test environment; if a sufficient hardware
basis is not available, another software system which simulates the hardware has
to be set up.

133

134 CHAPTER 9. APPLICATION TESTING

Environmental component
A

A
A

B System to be tested c

Y
Y

Figure 9.1: View from the perspective of the system which has to be tested

e The expected environmental structure around the system has to be set up
e The system has to be operated under real life circumstances

e Software testing alone is in most cases not sufficient

\ System to be tested /

Environmental
Component

Figure 9.2: View from one of the systems which realize the environment for the
system to be tested

This again makes clear, that input output specifications are of high necessity. If
these specifications exist, one system can be tested to behave accordingly before
it is used as a part of the environmental structure of the system which has to be
tested.

9.2 Building up systems for Simulation purposes

For our investigation of systems for Simulation purposes, we will now define an
example specification (plant model). Let us assume a feedforward control system
as given in Figure 9.3.

9.2. BUILDING UP SYSTEMS FOR SIMULATION PURPOSES 135

V3
— Q3

Figure 9.3: A sample processing plant

The plant consists of a tank, three level sensors Ly, Lo, Lz of which two (Lq,L5)
are binary sensors which indicate 1 if the fluid level has reached (or is higher) than
the sensor; these are the important sensor signals for our feedforward control. Lj
is analogous and fed to an indicator, which gives the actual level in %.

9.2.1 Dynamic model of the tank

The first step in our software design process will be to analyze the dynamic
behaviour of the tank-system. As we know from basic control-systems and system
modeling theory, a fluid tank can be modelled as an integrator with the initial
value the initial volume and the input and outut flows as Q; = V (¢):

136 CHAPTER 9. APPLICATION TESTING

t1

vV = /th (9.1)

0
t1

= V(t0)+/th (9.2)

As the system is of first order and the sensors as well as the actors are binary, we
may omit a nonlinear analysis of the tank although it is not purely cylindrical.
For a purely cylindrical tank, level and volume are related through

V() = mr-(t) (9.3)

with 7 the radius of the tank and [/ the level. Thus we obtain finally:

V(t0)+?th
i = ——2— (9-4)

T2

The dynamic behaviour of this system is given by the block diagram in Figure
9.4. This we need to design a simulator of the plant which acts according to the
dynamic features of the real plant.

A

—>O—>—>—>

L1 is the area of the

Figure 9.4: The block-diagram for dynamic simulation, -

cylindric tank’s base

Now the next step is to make up a design for the logic control part. The user
specification is given as follows:

e The tank level should be kept around 90%. The first sensor, L; indicates
90% fluid level, the second sensor, L, indicates 35%.

e The actors are operated as binary actors - the valves V;,V5 and V3 are either
open or closed.

e Whenever the level in the tank reduces below 90%, the first valve has to be
opened, after the level of 35% is reached, the second valve should be also
opened.

9.3. SINGLE SYSTEM SOLUTION 137

e the output stream of the output valve is 1.5 times the input stream of both
the input valves.

The control algorithm for the given plant will be designed using an interpreted
Petri net as proposed in [7].

—) 0 0 O=——

Figure 9.5: The petri net for the control algorithm

As the plant cannot be accessed (because of some special reasons, e.g. production
must not be disturbed, poisonous gas, etc.), we have to set up the controller and
the plant. One very important point in making a simulation model is that the
terminal specification, such as which sensor signals and actor signals exist, must
be known in advance. Only a good terminal specification grants errorfree control
systems if they are designed in advance.

In the next section we will set up both, the feedforward controller and the plant
in software. We will first leave out the hardware layer which is then added in
the final section of this chapter. As for our approach we only need a very rough
dynamical model, we do not need a good realtime basis; that is why we do not
necessarily need a special interface and thus can use ordinary system timers.

9.3 Single system solution

9.3.1 Simulation of the plant

Our first task is to set up a simulation entity for our tank-valve-system. For the
tanks’s dynamics we already set up a rough model. As the plant dynamics are
very slow and we do not consider a closed loop system, real-time simulation is
not required (although a stable timing is needed).

138 CHAPTER 9. APPLICATION TESTING

In order to simulate the input signal states and to visualize the output signals of
the plant’s sensors and actors, we introduce graphical buttons. The visualization
of the plant is obtained by opening an image file and visualizing it in the back-
ground of the simulation window.

The integration of the amount of fluid in the tank is performed using Euler-
integration:

y() = / s(#)dt (9.5)

= Ta-Zx(k) +a(k+1)

Thus the integration is performed using the following equation:
yk+1) = yk)+z(k+1) (9.6)

This is in the Z-domain:

ylk+1)—yk) = z(k+1)
(z=1)-Y(2) = z-X(2)
Y(z) = X(2) (9.7)

The above integration algorithm is easily implementable using a timer-routine
which is called every sample step T:

void Flowactor::Integrate()

{
//Integrate Flows
m_Volume+=m_Tax*(m_Q1+m_Q2+m_Q3)*0.05;

if (m_Volume>120) m_Volume=120; // Do not overflow
if (m_Volume<0) m_Volume=0; // (closed Tank)

9.3. SINGLE SYSTEM SOLUTION 139

x(K)

Tq 2T 3T, LT
a

Figure 9.6: Euler-Integration using a sampled signal

if (m_oldvolume>m_Volume) QProgressBar_1->reset();
m_oldvolume=m_Volume;
QProgressBar_1->setProgress (m_Volume*10) ;

//Check Fluid-Level and setze/reset
//L1 and L2 accordingly

if (m_Volume>35) QPushButtonA2->setOn(TRUE); //35 % of maximum Level
else QPushButtonA2->setOn(FALSE) ;
if (m_Volume>90) QPushButtonAl->setOn(TRUE); //90 % of maximum Level
else QPushButtonAl->setOn(FALSE);

The input flows to the plant are determined by the buttons pressed by the user
(for test purpose). Therefor the following slots have been implemented:

/** Button E1/A1 pressed */
void Flowactor::Ventili10ffen()

{
if (QPushButtonEl->isOn())
{
m_Q1=75;
}
else
{
m_Q1=0;
}
}

/** Button E2/A2 pressed */

140 CHAPTER 9. APPLICATION TESTING

void Flowactor::Ventil20ffen()

{
if (QPushButtonE2->is0n())
{
m_Q2=75;
}
else
{
m_Q2=0;
}
}

/** Button E3/A3 pressed */
void Flowactor: :Ventil30ffen()

{
if (QPushButtonE3->is0n())
{
m_Q3=-100;
}
else
{
m_Q3=0;
}
}

The initialization of the timer and communication of the buttons is performed in
the constructor of the flowactor-entity:

Flowactor::Flowactor(QWidget *parent, const char *name)
: QWidget(parent, name)

{
initDialog();
//Load image and show
m_Reaktor.load("actor.pnm") ;
m_Reaktordraw.convertFromImage (m_Reaktor) ;
m_oldvolume=0;

//Set initial volume to 50%
m_Volume=50;

m_Ta=0.1;

m_Q1=0;

m_Q2=0;

m_Q3=0;

//Slots
connect (QPushButtonE1l, SIGNAL(clicked()),
this, SLOT(VentillOffen()));

9.3. SINGLE SYSTEM SOLUTION 141

connect (QPushButtonE2, SIGNAL(clicked()),
this, SLOT(Ventil20ffen()));
connect (QPushButtonE3, SIGNAL(clicked()),
this, SLOT(Ventil30ffen()));

//Timer init

m_Timer = new QTimer(this);

connect(m_Timer, SIGNAL(timeout()),
this, SLOT(Integrate()));

m_Timer->start(100, FALSE);

// 0.1 seconds=Ta=100msec

The visualization of the level in the tank is obtained using a progress bar and for
visualization of the signals, we introduced the buttons:

void Flowactor::initDialog(){
this—>resize(680,620);
this->setMinimumSize (0,0);
QProgressBar_1= new QProgressBar(this,"NoName");
QProgressBar_1->setGeometry(40,560,510,20);
QProgressBar_1->setMinimumSize(0,0) ;
QProgressBar_1->setTotalSteps(1000) ;

QLabel_1= new QLabel(this,'"NoName");
QLabel_1->setGeometry(40,580,30,30);
QLabel_1->setMinimumSize(0,0) ;
QLabel_1->setText (("0%"));

QLabel_2= new QLabel(this,'"NoName");
QLabel_2->setGeometry(520,580,40,30) ;
QLabel_2->setMinimumSize (0,0) ;
QLabel_2->setText (("100%"));

QPushButtonEl= new QPushButton(this,'"NoName");
QPushButtonEl->setGeometry(570,50,70,30);
QPushButtonEl1->setMinimumSize (0,0) ;
QPushButtonEl1->setText (("E1/A1"));
QPushButtonEl->setToggleButton(true) ;

QPushButtonE2= new QPushButton(this,'"NoName");
QPushButtonE2->setGeometry(570,110,70,30);
QPushButtonE2->setMinimumSize (0,0) ;
QPushButtonE2->setText (("E2/A2"));
QPushButtonE2->setToggleButton(true) ;

QPushButtonE3= new QPushButton(this,'"NoName");

142 CHAPTER 9. APPLICATION TESTING

QPushButtonE3->setGeometry(570,480,70,30);
QPushButtonE3->setMinimumSize (0,0) ;
QPushButtonE3->setText (("E3/A3"));
QPushButtonE3->setToggleButton(true) ;

QLabel_3= new QLabel(this,'"NoName");
QLabel_3->setGeometry(40,10,120,30);
QLabel_3->setMinimumSize (0,0) ;
QLabel_3->setText (("Fiillstandsstrecke"));

QPushButtonAl= new QPushButton(this,"NoName");
QPushButtonAl->setGeometry(300,210,70,30);
QPushButtonAl->setMinimumSize (0,0) ;
QPushButtonAl->setText (("A1/E1"));
QPushButtonAl->setToggleButton(true) ;
QPushButtonAl->setEnabled(FALSE);

QPushButtonA2= new QPushButton(this,"NoName");
QPushButtonA2->setGeometry(300,385,70,30);
QPushButtonA2->setMinimumSize (0,0) ;
QPushButtonA2->setText (("A2/E2"));
QPushButtonA2->setToggleButton(true) ;
QPushButtonA2->setEnabled(FALSE);

QLabel_4= new QLabel(this,"NoName");
QLabel_4->setGeometry(530,10,130,30);
QLabel_4->setMinimumSize (0,0) ;
QLabel_4->setText (("Sensor/Actuator-Signals"));

The Entity-Block-Diagram of the simulation entity is given in Fig. 9.7
The following class definition depicts the organization of the Entity given in Fig.
9.7:

class Flowactor : public QWidget {
Q_OBJECT
public:
Flowactor(QWidget *parent=0, const char *name=0) ;
“Flowactor();

protected:
void initDialog();

QProgressBar *(QProgressBar_1;
QLabel *QLabel_1;

QLabel *QLabel_2;

QPushButton *QPushButtonEl;

9.3. SINGLE SYSTEM SOLUTION

Application

I

?

Flowactor
ValvelOpen
Valve20pen
Valve30pen
paintEvent
Integrate
S y

Y

ButtonEl/A1 ButtonE2/A2

ButtonE3/A3

143

ProgressBar

Figure 9.7: The Entity-Block-Diagram of the Actor-Simulation Entity

QPushButton *QPushButtonE2;
QPushButton *QPushButtonE3;
QLabel *QLabel_3;

QPushButton *QPushButtonAil;
QPushButton *QPushButtonA2;
QPushButton *QPushButtonA3;
QLabel *QLabel_4;

144 CHAPTER 9. APPLICATION TESTING

//Darstellung des Reaktors

QImage m_Reaktor;

(QPixmap m_Reaktordraw;
private:

public:

protected:
void paintEvent(QPaintEvent* paintevent) ;
public slots: // Public slots
/*%x x/
void Ventil30ffen();
public slots: // Public slots
/*x x/
void Ventil20ffen();
public slots: // Public slots
/*%x x/
void VentiliOffen();
void Integrate();

public:
void ComError();

public:

float m_Volume;
float m_oldvolume;
float m_Q1;

float m_Q2;

float m_Q3;

float m_Ta;
QTimer* m_Timer;

};

9.3.1.1 Timer and Plant Dynamics

The logic control is built up in a similar manner as the plant simulator. First of
all, it consists mainly of the underlying petrinet which realizes the logic control
algorithm.

The petrinet can be decomposed int its components:

e Arcs
e Transitions

e Places

9.3. SINGLE SYSTEM SOLUTION 145

Figure 9.8: A sample processing plant

According to the principles of object orientation, this is possible - here we select
an alternative but still object-oriented approach:

The entity Petrinet sets up all transitions and places. Their only functionality is
to visualize themselves (in case of places: their state, etc.) The petrinet-entity
guarantees the concession-rule and switches transitions.

In a general case, we would use an incidence-matrix which is built up from the
information about which transitions are ready to switch and to determine the
following state which is given by the set of all places and the token-positions
(see Appendix A). The entity-diagram given in Fig. 9.9 The following class
description gives the coded version of Fig. 9.9:

class Petrinetz : public (Object
{
public:

Petrinetz();

“Petrinetz();

void SetPosition(int x, int y);

146 CHAPTER 9. APPLICATION TESTING

Petrinet

Transition[1] Transition[N]

Figure 9.9: The Entity diagram of the petrinet entity

void Paintme(QPainter* painter);
void Grundstellung();

public:

bool Switchthrough();
public:

Place m_Place[6];
Transition m_Trans[4];
bool m_el;

bool m_e2;

bool m_al;

bool m_a2;
public:

int m_PosX;

9.3. SINGLE SYSTEM SOLUTION

int m_PosY;

};

147

The following code shows the implementation of the switching conditions for the
petrinet:

bool Petrinetz::Switchthrough()

{

bool erg=FALSE;

//Transition O skskskskskskskskskokskok sk ok sk ok ok sk ok sk ok sk ok sk ok ok 3k ok 3k sk ok ok ok ok 3k ok k ok ok ok ok ok k ok o ok
if ((m_Place[0] .m_active==TRUE)&&(m_Place[2] .m_active==FALSE))
// Transition O ready

{
if (m_e1==TRUE) //Check switching condition
{
m_Place[0] .m_active=0; //deactivate places
m_Place[2] .m_active=1;
erg=TRUE;
}
}

//Transition O End sk sk sk sk sk sk sk sk sk sk sk sk 3k ok sk 3 ok ok sk 5k sk sk 3k ok 3k ok ok 3k 5k ok 3k 3 ok 3k o ok ok ok ok

//Transition 1 skskskskskokskskok sk sk ok skk sk ok sk sk ok sk sk o ok 3k 3k ok sk 3k ok 3k 3k ok 3k K ok 3k 3 ok 3k o ok 3k ok ok ok K
if ((m_Place[1].m_active==TRUE)&&(m_Place[3].m_active==FALSE))
// Transition 1 schaltbereit

{
if (m_e2==TRUE)
{
m_Place[1] .m_active=0;
m_Place[3] .m_active=1;
erg=TRUE;
}
}

//Transition 1 Ende s sksksksksk sk sk sk sk sk sk sk sk sk 3 ok ok 3k 5k ok sk 3k ok sk ok ok sk 5k ok 3k 3 ok sk 3 ok ok ok ok ok ok

//Transition 2 sksksksksksksksk ok sk sk ok skk sk ok sk 3k ok sk sk 3k ok 3k 3k ok sk 3k ok 3k 3k ok 3k 5 ok 3k 3 ok 3k o ok 3k K ok ok K
if ((m_Place[3].m_active==TRUE)&&(m_Place[1] .m_active==FALSE))
// Transition 2 schaltbereit

{
if (m_e2==FALSE) //Transition schalten
{
m_Place[3] .m_active=0;
m_Place[1] .m_active=1;
erg=TRUE;
}

148 CHAPTER 9. APPLICATION TESTING

//Transition 2 Ende skskokskskskskskkskokokok sk sk sk s ok ok ok ok sk sk ok ok ok ok ok ok ok ok sk ok ok ok ook ok ok

//TTansition 3 skokoskskskkkskokokok sk sk okokokok ok ok ok ok ootk ok ok ok stk ok ok ok o ok ook ok ok o ok koo o
if ((m_Place[2] .m_active==TRUE)&&(m_Place[0] .m_active==FALSE))
// Transition 3 schaltbereit

{
if (m_e1==FALSE) //Transition schalten
{
m_Place[2] .m_active=0;
m_Place[0] .m_active=1;
erg=TRUE;
}
}

//Transition 3 Ende sskskokskskskskskkoskokokok sk sk s ok ok ok ok k ok ok ok o ok okook ok ok ok sk ko ok ook ok ok

//Setze ausginge passend

if (m_Place[0] .m_active==1) m_al=0;
if (m_Place[2] .m_active==1) m_al=1;
if (m_Place[1].m_active==1) m_a2=0;
if (m_Place[3].m_active==1) m_a2=1;
return erg;

//Initial setting (safe mode)
void Petrinetz::Grundstellung()

{

¥

m_Place[0] .m_active=1;
m_Place[1] .m_active=1;
m_Place[2] .m_active=0;
m_Place[3] .m_active=0;

//Setze the place related output
//signals

if (m_Place[0] .m_active==1) m_al=0;
if (m_Place[2] .m_active==1) m_al=1;
if (m_Place[1] .m_active==1) m_a2=0;
if (m_Place[3].m_active==1) m_a2=1;

The activity of the Petri net is again triggered using a timer in the flowcontrol-
entity that calls the Switchthrough()-function.

void Flowcontrol: :timerDone ()

{

bool erg;
erg= m_sipn.Switchthrough();
if (erg)

9.3. SINGLE SYSTEM SOLUTION

¥

if (m_sipn.m_al==TRUE)
{
QPushButtonAl->set0n(TRUE) ;

QPushButtonAl->set0On(FALSE) ;
}
if (m_sipn.m_a2==TRUE)
{
QPushButtonA2->set0n(TRUE) ;
}
else
{
QPushButtonA2->set0n(FALSE) ;
}
update() ;

//User Input (drain valve)

if (m_sipn.m_e3==TRUE)

{
QPushButtonE3->set0n(TRUE) ;
}
else
{
QPushButtonE3->set0On (FALSE) ;
}

149

The signals are again set or rest using buttons and the Petri net is provided with
the necessary information using the following slots:

//Sensor signals :

connect(QPushButtonEl, SIGNAL(clicked()),this, SLOT(elkommt()));
connect(QPushButtonE2, SIGNAL(clicked()),this, SLOT(e2kommt()));

The states of the signals (symbolized by the buttons) is then used to trigger the

petrinet as descibed above:

/** Sensor el x*x/
void Flowcontrol::elkommt ()
{
if (QPushButtonE1->is0n())
{

m_sipn.m_el=1;

150 CHAPTER 9. APPLICATION TESTING

m_sipn.m_el=0;

/** Sensor e2 */
void Flowcontrol: :e2kommt ()

{
if (QPushButtonE2->is0On())
{
m_sipn.m_e2=1;
}
else
{
m_sipn.m_e2=0;
}
}

9.3.1.2 Visualization layer

The visualization of the petrinet and its elements is again hierachically ordered.
The petrinet entity makes the entities comprised in the petrinet-entity draw them-
selves:

void Petrinetz::Paintme (QPainter* Painter)

{

int 1i;

for(i=0;i<4;i++) m_Place[i] .Paintme(Painter);
for(i=0;i<4;i++) m_Trans[i] .Paintme (Painter) ;

9.3.2 Connection of Controller and Plant

Now the test of the plant and the logic control working together has to be per-
formed - now we have to connect both applications. We have two possibilities:

e Connection through an entity which takes over the data-transfer and realizes
a coupling

e Connection using e.g. serial port hardware and a cable.

The object oriented approach is a versatile tool. The entity which connects both
applications and sets the signal-variables according to the outputs respectively

9.3. SINGLE SYSTEM SOLUTION 151

Figure 9.10: The visualized petrinet and the logic control for the tank process

inputs of either of the entities will be replaced later by a communication entity
which sets these variables according to read or sent data.

Besides the flowactor we set up the flowcontrol entity. The buttons for the user
have to be disables except for the button A3/E3 which is left to the user to sim-
ulate draining of the tank.

All signals are generated by either the plant’s sensors or are outputs of the Petri
net in the logic control application.

The values have to be updated regularly. In this case, we do not want to change
neither the function-code of the logic control entity nor those of the actor entity.
Thus we use a timer in the connecting entity which updates the signals’ values.

These tasks are taken over by the meta-system for both entities: the FlowProcess
entity.

152 CHAPTER 9. APPLICATION TESTING

QApplication

FlowProcess

0

FlowActor FlowControl

Figure 9.11: Connection using object oriented principles

9.3. SINGLE SYSTEM SOLUTION 153

Figure 9.12: Basic connection of the Plant and the logic control

154 CHAPTER 9. APPLICATION TESTING

9.4 Solution using two systems

If two systems are used for hardware testing, the setup can be made more real-
istic. One machine simulates the process, one machine simulates the controller
(logical or feedback). As the terminal descriptions of plants can be taken from
their user manuals, the developer need not operate on the real plant but can
instead develop and test the control algorithm on the simulated plant.

QApplication QApplication
Portl nteﬁ ace Portl nterface
M
O
FlowActor FlowControl

Figure 9.13: Connection of the plant and the logic control using communication
entities

The two systems solution is of course more close to the real setup. Using our
object oriented approach, we just have to replace the CFlowProcess entity and
replace it by an appropriate entity that provides the communication features and
feeds data to the entities for on one hand process control and on the other ma-
chine to the process simulation entity.

9.4. SOLUTION USING TWO SYSTEMS 155

Figure 9.13 shows the entity block diagram of the systems (both simulation of
the plant and logic controller) which are now interconnected using the serial port.
The hardware interface now takes over the duties of the entity FlowProcess in
Fig. 9.11.

The following code realizes the hardware interface:

class Flowcontrol_serialcom
{
public:
/** construtor */
Flowcontrol_serialcom();
/** destructor */
“Flowcontrol_serialcom();

public: //Parameters for communication

Flowcontrol* m_control;
bool m_al; //Signals to the actor

bool m_a2; //(from controller)
bool m_el; //Signals to controller
bool m_e2;

bool m_e3;

int m_serial; //File-Descriptor serial Port

//Data Structures for port handling
struct termios m_oldtio,m_newtio;

//Member functions for port handling
void OpenSerial();
void CloseSerial();

QTimer* m_Timer; //Timer

public slots:
void Communicate(); //Function for communication

};

A similar entity is set up for the plant. The implementation for the serial com-
munication is given as follows:

Flowcontrol_serialcom: :Flowcontrol_serialcom()

{

156 CHAPTER 9. APPLICATION TESTING

//0pen serial port
OpenSerial();

//Set timer
m_Timer = new QTimer(this);
connect(m_Timer, SIGNAL(timeout()), this, SLOT(Communicate()));
m_Timer->start(50, FALSE); // 0.1 seconds
}

Flowcontrolmitseriell:: “Flowcontrolmitseriell()
{

//Close the serial port

CloseSerial();

//Remove timer
if (m_Timer) delete m_Timer;

}

void Flowcontrolmitseriell::Communicate()
{

char buffer[255];

m_Timer->stop();

m_al=m_control->m_sipn.m_al;
m_a2=m_control->m_sipn.m_a2;

//Write outputs to port
buffer[0]=(char) (m_al);
buffer[1]=(char) (m_a2);
write(m_serial,buffer,?2);

//Read inputs from port
read(m_serial,buffer,3);
m_el=(bool) (buffer[0]);
m_e2=(bool) (buffer[1]);
m_e3=(bool) (buffer[2]);

m_control->m_sipn.m_el=m_el;
m_control->m_sipn.m_e2=m_e2;

m_control->m_sipn.m_e3=m_e3;

m_Timer->start(50, FALSE);

9.4. SOLUTION USING TWO SYSTEMS

void Flowcontrolmitseriell: :0OpenSerial()

{

if (-1==(m_serial=::open("/dev/ttySO", O_RDWR | O_NOCTTY)))

{

warning ("/dev/ttySO could not be opened");

}

tcgetattr(m_serial,&m_oldtio); //Alte Einstellungen holen

bzero(&m_newtio,sizeof (m_newtio)); //Neue Einstellungen machen
m_newtio.c_cflag = B38400 | CS8 | CLOCAL | CREAD ;

m_newtio.c_iflag
m_newtio.c_oflag

m_newtio.c_lflag =

IGNPAR |
IGNPAR |
0;

m_newtio.c_cc[VTIME]=0;
m_newtio.c_cc[VMIN]=2;

//Clean line

tcflush(m_serial ,TCIFLUSH); //Input Buffer
tcflush(m_serial ,TCOFLUSH) ; //Output Buffer
tcsetattr(m_serial,TCSANOW,&m_newtio) ;

void Flowcontrolmitseriell::CloseSerial()

tcsetattr(m_serial,TCSANOW,&m_oldtio) ;

}
{
if (m_serial!=-1)
{
close(m_serial);
}

¥

ICRNL;
ICRNL;

157

If a successful operation of the controller on the plant can be guaranteed, the

controller can be tried on the real plant as depicted in Fig. 9.14.

158 CHAPTER 9. APPLICATION TESTING

M)
U/
0
5= = S 5= =
= § ==
O) =, I

I o I
— S —

D\ Y/ S =\

Controller on IPC Plant Simulation

. . J
&k A \\

Controller on IPC Real Plant

v i
o
I

o

1

|
wonweuuoo ()

Figure 9.14: A setup with data communication and simulation or real plant
coupling

Chapter 10

User Requirements and Design
Document

In this chapter, we deal with a topic which is neither scientific nor directly related
to the paradigms of software-development. Producing a good design document
and transferring the user requirements into a suitable solution is a very important
task. For the design engineer, the design document is important as far as she/he
derives her /his software-design and the realization effort for a certain project from
a design document.

Leaving this simple step out can lead to terrible misunderstandings and will also
give room for speculations about the functionality of the delivered software.

However, formulating a design document from the User Requirements is an im-
portant but also time consuming task.

Unfortunately, the user requirements and the design document are considered
beeing very similar and thus setting up the user requirements document is some-
times left out. This often encountered mistake in practice is one of the frequently
occuring reasons for complaints: if a design document has been elaborated, then
the customer (the one who uses the software package later) can decide whether
the planned application suits her/his needs.

The process is thus itself algorithmic and iterative and is given in a rough form

in Figure 10.1

10.1 Acquiring Information and User Require-
ments

In fact, the different types of applications can be subdivided in such ones where
terminal specifications and process specifications are given and others where e.g.

159

160 CHAPTER 10. USER REQUIREMENTS AND DESIGN DOCUMENT

Has to be performed by the design
START engineer
Acquire user’s
Ideas and
reguirements
' I =w
Analyze design procedure
requirements
¢ Set up design
Formalize document
requirements
Set up user
reguirements
document
Set up design
document
END

Can be performed by the customer

Figure 10.1: Forming the design document

a user interface has to be designed.

In either case, the specifications have to be studied exactly. Concerning the so
called expert interview, it is more important to have a good imagination of the
customers needs. It is very important to quickly find out the neuralgic points in
the concepts and requirements of the user and to give impulses in such a way, that
necessary workarounds are not postponed till the design process of an application
is already over.

Many neuralgic points can only be decovered if the ideas of both, customer and
interviewer are discussed.

Further, the interviewer has to be an expert, as deeply familiar with e.g. nonlin-
ear control systems, problems in sampled data systems or even the disadvantages

10.2. SETTING UP THE DESIGN DOCUMENT 161

of different bus systems as he/she has to be an expert in software development.

If one of these points of view are omitted, a very bad mistake can happen:
promises which cannot be kept because of technical reasons are made.

The next step is to make a more precise model of what to do from the inquired
data: the design document.

10.2 Setting up the design document

The design document is set up based on the facts, needs, terminal specifications
of the customer. Now it is the duty of the design engineer to find solutions of the
users requests.

This process is not so straight and many circumstances influence the whole de-
sign process; for example one could have to choose a special hardware to fulfill a
certain user request which is not available at the moment, for a realtime system,
a special realtime kernel has to be chosen etc.

If changes concerning the required functionalities have to be made, it is time to
talk to the customer again and to make clear why something has to be realized
in a different manner.

162 CHAPTER 10. USER REQUIREMENTS AND DESIGN DOCUMENT

Appendix A

Petri Nets

Petri nets are well suited to visualize, analyze or synthesize process control pro-
cedures. Petri nets consist of the following elements:

Symbol Name Meaning in
Procss control

Q Place Situation (Time consuming)

I | Transition | No Time-Consumption

| directional | Creation of structure
arc

® Token activity information

In the mathematical sense, a Petri net is a bipartite Digraph consisting of places
and transitions as nodes.

A digraph ist a graph with directed arcs, in case of the Petri net, transitions and
places are joined with arcs in a mutually exclusive way: a transition can only be
connected to a place and a place can only be connected to a transition. Tran-
sitions can never be connected to transitions and places cannot be connected to
places.

163

164 APPENDIX A. PETRI NETS

A.1 Dynamical View of a Petri net

Places hold tokens which are flowing through the net. The transitions take tokens
from their pre-arcs and exhaust tokens into their post-arcs.

The state vector S is given by the vector made up of all tokens in the places
where the places are related to whole numbers Nj.

S — Ny (A1)

As we do not consider Petri nets with higher numbers of tokens than one in one
place and also without higher arc-flowrates, we obtainforS = (sg s; ... sy)
with s; € {0,1}. The initial state is thus Sy.

Concerning the transition from one state to another, leading to a flow of tokens
in the net, we only take a look at the strict sense concession rule:

e A transition is activated, one says, it has concession if all places which are
linked through pre-arcs to the transition are marked with a token and all
places which are connected to the transition through post-arcs are free.

e During the switching process, all the places which are linked through pre-
arcs to a transition are taken a token from and the ones which are linked
through post-arcs are supplied with a token.

A.2. STRUKTURAL PROPRTIES 165

A.2 Struktural proprties

A.2.0.1 Reachability

A state S; is reachable outgoing from the initial state Sy if a sequence of transi-
tions exists which leads from Sy to S;.

Example:
T2
s1 S2 GE'—
T5
T1 T3 T4
N/
With the series of
So = (0 0) (A.2)
Si = (0 1) (A.3)
S, (1 0) (A4

All states which are reachable outgoing from M, form the set of reachable states
RS(Sp). For the given Petri net, we obtain (considering the initial state) Sy =
(0110) the following set of reachable states:

RS(0 1 10) =4{(0001),(1010),(0110)}

The graph that visualizes the reachable states is given in the following figure.

166 APPENDIX A. PETRI NETS

A.2.1 Deadlocks

A Petri net is called alive, if every transition of the net can be reactivated through
a limited number of transitions. A deadlock is implied, if at least one transition
cannot be activated, a total deadlock means that there exist states which cannot
be exited, i.e. no transition which leads to another state can occur.

A.3 Algebraic View on Petri Nets

A Petri net can be described mathematically by giving its incidence matrix and
the vector of transitions that have concession and are ready to switch.

St =Si +N: 6 (A.5)
with:

Sk the vector of tokens in the places of the net in the k-th step
Sii1 the vector of tokens in the places of the net in the k + 1-st step
N the incidence matrix

) the switching vector

Die gesamte Gleichung beschreibt den Markenflu”s in Abh”angigkeit von den
schaltenden Transitionen. Die Inzidenzmatrix wird sinnvollerweise aufgeteilt, und
zwar in:

e N7, describes the token flow of the post arcs, from the transitions to the
places

A.3. ALGEBRAIC VIEW ON PETRI NETS 167

e N describes the token flow of the pre acrs, from the places to the transi-
tions

The incidence matrix N is calculated using N and N, hence:

N=N'"—-N" (A.6)

Generally, we have:
N = (5.1 (A7)
N* = (T,8)" (A.8)

How one sets up the incidence matrices is described in the following example:

®s:

s O @s;

S, @ @ S, @ Se

s O O Ss

For the Petri net given above, we obtain the following incidence matrices:

168 APPENDIX A. PETRI NETS

1. Post arcs:

Nt =

SR OO OO OO
_— O OO O oo o
SO R OO OO O

SO OO O o —-=O
O OO = == OO

2. Pre arcs:

(A.10)

SO = OO kO
SO DD DD OO —-=O
SO OO OO O
S OO OO OO
_— =0 OO oo O

The incidence matrix is then:

N=N"—-N" (A.11)

hence

(A.12)

o000 O RO
oo~ MR, R, OO
S o o000 oo
— o o0oococo0ooo
oo~ oococo o
COoOHH OO RO~
o000 O RO
coocoo o OoO
coo~,OoOOoC OO
—_—_ 00000 O

—_
|
—_
o OO

|
—_

|

—_
OO O = = =
O = O O

For the calculation of the next state, given by the vector S of the net, we have to
set up the switching vector; the switching vector contains the transitions which

A.4. INTERPRETATION OF PETRI NETS 169

are ready to switch in the (k + 1)st step accordig to their switching condition.
We denote the switching vector as ;1.

Example: (continued) The initial state of the Petri net is given by S, (initial
marking)

(A.13)

[i QN S Gy S G G W Gy, Y

Let us assume, transitions T;, T3 and T, are ready to switch (strict concession
rule, all input places of transitions are marked, all output places are vacant):

St =Si + N6 (A.14)
1 1 0 0 0 O 0
0 1 -1 0 0 0 . 1
1 11 0 0 0 0 0
1 0 1 -1 0 0 0
Sen=1 1 [T o 1 0o —1 0 1 = o (A-15)
1 -1 0 0 0 1 0 0
0 o 0 1 0 -1 1
0 o 0 0 1 -1 1

The same result can be obtained by graphical processing of the net from the
figure above.

A.4 Interpretation of Petri Nets

Interpreted Petri nets contain additional information. Whereas a non interpreted
Petri net is a pure mathematical construction, interpreted Petri nets are fre-
quently used in technical sciences. Many different interpretations are possible.
Interpreted Petri nets are IPN. In process control, interpreted Petri nets (see Litz
[7]) IPN give important syntax extensions for the in- and output of information.

A.4.1 Interpretation for process control applications

1. The transitions are extended by introducing switching conditions - that are
boolean or numerical expressions. These are called SC(T;). A switching

170 APPENDIX A. PETRI NETS

condition is fulfilled, if SC(7;) = 1 - if the condition is true according to
the boolean algebra.

2. The set of rules (concession rule, switching conditions) is extended by the so
called synchronization rule: a transition in an interpreted Petri net switches
if it is activated and if its switching condition is fulfilled. A transition is
called activated if the concession rule is fulfilled (all places connected by
pre arcs are marked, all places connected by post arcs are vavant. Marked
places produce outputs. The whole output signal vector (ay,as,...,a,) is
formed by the outputs which are generated by the set of marked places.

A.4.2 Interpretation as flow diagrams

Petri nets can also be used to depict the behaviour of algorithms. In this case the
transitions contain the executed parts of the algorithm. The switching condition
is given by e.g. values of variables and in general, places have no outputs.

Appendix B

Development Excercises

B.1 Object oriented programming

B.1.1 A simple example

Design three entities for polled i/o:
1. An i/o-board (ref. chapter 3) simulation entity
2. An i/o-board-handler entity

3. An entity which couples both the previously given entities and realizes a
meta-system for them

B.1.2 An object oriented list

According to the details given in chapter 5 develop a list class that deals with
the list’s nodes. First, draw the object oriented entity diagram.

Your implementation should contain:
e Adding nodes
e Inserting nodes
e Removing nodes

Describe which member functions deal with internal tasks of the list and which
ones are realizing the list’'s API.

171

172 APPENDIX B. DEVELOPMENT EXCERCISES

B.2 User interfaces

The following excercises deal with the development of user-interfaces and QT’s
signal and slot mechanisms for message-handling.

B.2.1 Some buttons, signals and slots

Design a GUI using 3 different buttons. These buttons have to be connected to
member functions (slots) of the button-containing class. For every pressed but-
ton a dialog has to open in which the user has to type in the new text for the
button-label.

B.2.2 A dynamical visualization screen (oscilloscope)

The next step is to put the developed elements and our knowledge about GUI-
development together. This yields a dynamical visualization screen. The screen
should contain scroll-bars and a possibility to change the zoom factor of the axis.
Further, the user should be able to visualize an arbitrarily long trajectory.

1. Draw the object oriented entity block diagram
2. Derive your oscilloscope class from a basic widget class

3. Test your oscilloscope entity by providing different trajectories. The trajectory-
containing entity has to be well encapsulated in the oscilloscope

B.3. HARDWARE INTERFACE - A FRAME GRABBER DRIVER 173

B.3 Hardware interface - a Frame Grabber Driver

This section deals with writing an interface to a hardware module - in the present
case, which is especially useful in image processing

B.3.1 Interface description and design

The following description (from http://kernelnotes.org/doc23/video4linux/API.html)
gives a brief overview of the device driver basics for a framegrabber device:

1. Devices

Video4Linux provides the following sets of device files. These live on the char-
acter device formerly known as /dev/bttv. /dev/bttv should be a symlink to
/dev/videoO for most people.

Device Name
Minor Range

Function
/dev/video
0-63
Video Capture Interface
/dev/radio
64-127
AM/FM Radio Devices
/dev/vtx
192-223
Teletext Interface Chips
/dev/vbi
224-239

Raw VBI Data (Intercast/teletext)

Video4Linux programs open and scan the devices to find what they are looking
for. Capability queries define what each interface supports. The described APT is
only defined for video capture cards. The relevant subset applies to radio cards.
Teletext interfaces talk the existing VITX API.

2. Capability Query Ioctl
The VIDIOCGCAP ioctl call is used to obtain the capability information for a
video device. The struct video_capability object passed to the ioctl is completed
and returned. It contains the following information:

name [32]

Canonical name for this interface
type

Type of interface

174 APPENDIX B. DEVELOPMENT EXCERCISES

channels

Number of radio/tv channels if appropriate
audios

Number of audio devices if appropriate
maxwidth

Maximum capture width in pixels

maxheight

Maximum capture height in pixels
minwidth

Minimum capture width in pixels
minheight

Minimum capture height in pixels

The type field lists the capability flags for the device. These are as follows

Name
Description

VID_TYPE_CAPTURE

Can capture to memory
VID_TYPE_TUNER

Has a tuner of some form
VID_TYPE_TELETEXT

Has teletext capability
VID_TYPE_OVERLAY

Can overlay its image onto the frame buffer
VID_TYPE_CHROMAKEY

Overlay is Chromakeyed
VID_TYPE_CLIPPING

Overlay clipping is supported
VID_TYPE_FRAMERAM

Overlay overwrites frame buffer memory
VID_TYPE_SCALES

The hardware supports image scaling
VID_TYPE_MONOCHROME

Image capture is grey scale only
VID_TYPE_SUBCAPTURE

Capture can be of only part of the image

The minimum and maximum sizes listed for a capture device do not imply all
that all height/width ratios or sizes within the range are possible. A request to
set a size will be honoured by the largest available capture size whose capture
is no large than the requested rectangle in either direction. For example the
quickcam has 3 fixed settings.

3. Frame Buffer

B.3. HARDWARE INTERFACE - A FRAME GRABBER DRIVER 175

Capture cards that drop data directly onto the frame buffer must be told the
base address of the frame buffer, its size and organisation. This is a privileged
ioct]l and one that eventually X itself should set.

The VIDIOCSFBUF ioctl sets the frame buffer parameters for a capture card.
If the card does not do direct writes to the frame buffer then this ioctl will be
unsupported. The VIDIOCGFBUF ioctl returns the currently used parameters.
The structure used in both cases is a struct video_buffer.

void *base
Base physical address of the buffer
int height
Height of the frame buffer
int width
Width of the frame buffer
int depth
Depth of the frame buffer
int bytesperline
Number of bytes of memory between
the start of two adjacent lines

Note that these values reflect the physical layout of the frame buffer. The visible
area may be smaller. In fact under XFree86 this is commonly the case. XFree86
DGA can provide the parameters required to set up this ioctl. Setting the base
address to NULL indicates there is no physical frame buffer access.

4. Capture Windows

The capture area is described by a struct video_window. This defines a capture
area and the clipping information if relevant. The VIDIOCGWIN ioctl recovers
the current settings and the VIDIOCSWIN sets new values. A successful call
to VIDIOCSWIN indicates that a suitable set of parameters have been chosen.
They do not indicate that exactly what was requested was granted. The program
should call VIDIOCGWIN to check if the nearest match was suitable. The struct
video_window contains the following fields.

X
The X co-ordinate specified in X windows format.
y
The Y co-ordinate specified in X windows format.
width
The width of the image capture.
height

The height of the image capture.
chromakey
A host order RGB32 value for the chroma key.

176 APPENDIX B. DEVELOPMENT EXCERCISES

flags

Additional capture flags.
clips

A 1ist of clipping rectangles. (Set only)
clipcount

The number of clipping rectangles. (Set only)

Clipping rectangles are passed as an array. Each clip consists of the following
fields available to the user.

X co-ordinate of rectangle to skip
y

Y co-ordinate of rectangle to skip
width

Width of rectangle to skip
height

Height of rectangle to skip

Merely setting the window does not enable capturing. Overlay capturing is ac-
tivated by passing the VIDIOCCAPTURE ioctl a value of 1, and disabled by
passing it a value of 0.

Some capture devices can capture a subfield of the image they actually see. This
is indicated when VIDEO_TYPE_SUBCAPTURE is defined. The video_capture
describes the time and special subfields to capture. The video_capture structure
contains the following fields.

X

X co-ordinate of source rectangle to grab
y

Y co-ordinate of source rectangle to grab
width

Width of source rectangle to grab
height

Height of source rectangle to grab
decimation

Decimation to apply
flags

Flag settings for grabbing

The available flags are

Name
Description
VIDEO_CAPTURE_ODD
Capture only odd frames

B.3. HARDWARE INTERFACE - A FRAME GRABBER DRIVER 177

VIDEO_CAPTURE_EVEN
Capture only even frames

5. Video Sources

Each video4linux video or audio device captures from one or more source chan-
nels. Each channel can be queries with the VDIOCGCHAN ioctl call. Before
invoking this function the caller must set the channel field to the channel that is
being queried. On return the struct video_channel is filled in with information
about the nature of the channel itself.

The VIDIOCSCHAN ioctl takes an integer argument and switches the capture to
this input. It is not defined whether parameters such as colour settings or tuning
are maintained across a channel switch. The caller should maintain settings as
desired for each channel. (This is reasonable as different video inputs may have
different properties).

The struct video_channel consists of the following elements:

channel
The channel number
name
The input name - preferably reflecting
the label on the card input itself
tuners
Number of tuners for this input
flags
Properties the tuner has
type
Input type (if known)
norm
The norm for this channel

The flags defined are

VIDEQ_VC_TUNER

Channel has tuners.
VIDEQ_VC_AUDIO

Channel has audio.
VIDEQ_VC_NORM

Channel has norm setting.

The types defined are

VIDEO_TYPE_TV

The input is a TV input.
VIDEO_TYPE_CAMERA

The input is a camera.

178 APPENDIX B. DEVELOPMENT EXCERCISES

6. Image Properties

The image properties of the picture can be queried with the VIDIOCGPICT ioctl
which fills in a struct video_picture. The VIDIOCSPICT ioctl allows values to
be changed. All values except for the palette type are scaled between 0-65535.

The struct video_picture consists of the following fields:

brightness
Picture brightness
hue
Picture hue (colour only)
colour
Picture colour (colour only)
contrast
Picture contrast
whiteness
The whiteness (greyscale only)
depth
The capture depth (may need to match the frame buffer depth)
palette
Reports the palette that should be used for this image

The following palettes are defined:

VIDEO_PALETTE_GREY

Linear intensity grey scale (255 is brightest).
VIDEO_PALETTE_HI240

The BT848 8bit colour cube.
VIDEO_PALETTE_RGB565

RGB565 packed into 16 bit words.
VIDEO_PALETTE_RGB555

RGV555 packed into 16 bit words,

top bit undefined.
VIDEO_PALETTE_RGB24

RGB888 packed into 24bit words.
VIDEO_PALETTE_RGB32

RGB888 packed into the low 3 bytes of 32bit words.

The top 8bits are undefined.
VIDEO_PALETTE_YUV422

Video style YUV422 - 8bits packed

4bits Y 2bits U 2bits V
VIDEO_PALETTE_YUYV

Describe me
VIDEO_PALETTE_UYVY

Describe me

B.3. HARDWARE INTERFACE - A FRAME GRABBER DRIVER 179

VIDEO_PALETTE_YUV420

YUV420 capture
VIDEO_PALETTE_YUV411

YUV411 capture
VIDEO_PALETTE_RAW

RAW capture (BT848)
VIDEO_PALETTE_YUV422P

YUV 4:2:2 Planar
VIDEO_PALETTE_YUV411P

YUV 4:1:1 Planar

7. Tuning

Each video input channel can have one or more tuners associated with it. Many
devices will not have tuners. TV cards and radio cards will have one or more
tuners attached.

Tuners are described by a struct video_tuner which can be obtained by the VID-
IOCGTUNER ioctl. Fill in the tuner number in the structure then pass the
structure to the ioctl to have the data filled in. The tuner can be switched using
VIDIOCSTUNER which takes an integer argument giving the tuner to use. A
struct tuner has the following fields:

tuner

Number of the tuner
name

Canonical name for this tuner (eg FM/AM/TV)
rangelow

Lowest tunable frequency
rangehigh

Highest tunable frequency
flags

Flags describing the tuner
mode

The video signal mode if relevant
signal

Signal strength if known - between 0-65535

The following flags exist

VIDEO_TUNER_PAL

PAL tuning is supported
VIDEO_TUNER_NTSC

NTSC tuning is supported
VIDEO_TUNER_SECAM

SECAM tuning is supported

180

APPENDIX B. DEVELOPMENT EXCERCISES

VIDEO_TUNER_LOW

Frequency is in a lower range
VIDEO_TUNER_NORM

The norm for this tuner is settable
VIDEO_TUNER_STEREQ_ON

The tuner is seeing stereo audio
VIDEO_TUNER_RDS_ON

The tuner is seeing a RDS datastream
VIDEO_TUNER_MBS_ON

The tuner is seeing a MBS datastream

The following modes are defined

VIDEO_MODE_PAL

The tuner is in PAL mode
VIDEO_MODE_NTSC

The tuner is in NTSC mode
VIDEO_MODE_SECAM

The tuner is in SECAM mode
VIDEO_MODE_AUTO

The tuner auto switches

or mode does not apply

Tuning frequencies are an unsigned 32bit value in 1/16th MHz or if the VIDEO_-
TUNER_LOW flag is set they are in 1/16th KHz. The current frequency is
obtained as an unsigned long via the VIDIOCGFREQ ioctl and set by the VID-
IOCSFREQ ioctl.

. Audio

TV and Radio devices have one or more audio inputs that may be selected.
The audio properties are queried by passing a struct video_audio to VIDIOC-
GAUDIO ioctl. The VIDIOCSAUDIO ioctl sets audio properties.

The structure contains the following fields:

audio
The channel number
volume
The volume level
bass
The bass level
treble
The treble level
flags
Flags describing the audio channel

B.3. HARDWARE INTERFACE - A FRAME GRABBER DRIVER 181

name

Canonical name for the audio input
mode

The mode the audio input is in
balance

The left/right balance
step

Actual step used by the hardware

The following flags are defined

VIDEO_AUDIO_MUTE

The audio is muted
VIDEO_AUDIO_MUTABLE

Audio muting is supported
VIDEO_AUDIO_VOLUME

The volume is controllable
VIDEO_AUDIO_BASS

The bass is controllable
VIDEO_AUDIO_TREBLE

The treble is controllable
VIDEO_AUDIO_BALANCE

The balance is controllable

The following decoding modes are defined

VIDEO_SOUND_MONO

Mono signal
VIDEO_SOUND_STEREQ

Stereo signal (NICAM for TV)
VIDEO_SOUND_LANG1

European TV alternate language 1
VIDEO_SOUND_LANG2

European TV alternate language 2

9. Reading Images

Each call to the read syscall returns the next available image from the device. It
is up to the caller to set the format and then to pass a suitable size buffer and
length to the function. Not all devices will support read operations.

A second way to handle image capture is via the mmap interface if supported.
To use the mmap interface a user first sets the desired image size and depth
properties. Next the VIDIOCGMBUF ioctl is issued. This reports the size of
buffer to mmap and the offset within the buffer for each frame. The number of

182

10.

APPENDIX B. DEVELOPMENT EXCERCISES

frames supported is device dependent and may only be one.

The video_mbuf structure contains the following fields:

size

The number of bytes to map
frames

The number of frames
offsets

The offset of each frame

Once the mmap has been made the VIDIOCMCAPTURE ioctl sets the image
size you wish to use (which should match or be below the initial query size).
Having done so it will begin capturing to the memory mapped buffer. Whenever
a buffer is “used” by the program it should called VIDIOCSYNC to free this
frame up and continue. to add:VIDIOCSYNC takes the frame number you are
freeing as its argument. When the buffer is unmapped or all the buffers are full
capture ceases. While capturing to memory the driver will make a “best effort”
attempt to capture to screen as well if requested. This normally means all frames
that “miss” memory mapped capture will go to the display.

A final ioctl exists to allow a device to obtain related devices if a driver has
multiple components (for example video0 may not be associated with vbi0 which
would cause an intercast display program to make a bad mistake). The VID-
TOCGUNIT ioctl reports the unit numbers of the associated devices if any exist.
The video_unit structure has the following fields.

video

Video capture device
vbi

VBI capture device
radio

Radio device
audio

Audio mixer
teletext

Teletext device

RDS Datastreams

For radio devices that support it, it is possible to receive Radio Data System
(RDS) data by means of a read() on the device. The data is packed in groups of
three, as follows:

B.3. HARDWARE INTERFACE - A FRAME GRABBER DRIVER

First Octet

Least Significant Byte of RDS Block

Second Octet

Most Significant Byte of RDS Block

Third Octet

B.3.2

Bit 7:
Error bit. Indicates that an uncorrectable
error occurred during reception of this block.

Bit 6:
Corrected bit. Indicates that an error was
corrected for this data block.

Bits 5-3:
Received Offset. Indicates the offset
received by the sync system.

Bits 2-0:
Offset Name. Indicates the offset applied
to this data.

Frame Grabber Image Acquisition Application

183

For a test of the video-interface handling entity, you have to write an object
oriented program which acquires frames from a certain video-channel and shows
them on the screen. For this purpose build a main-widget-class which contains
the necessary paint-methods and a button for acquiring a new image.

184 APPENDIX B. DEVELOPMENT EXCERCISES

B.4 Control system operator blocks

The following sections are dedicated to the design of control loops, either for
simulation purposes or additionally for coupling with hardware. The blocks are
standard-blocks and integration as well as summation have to be set up for sam-
pled data systems.

X(KT 5)

2

Tq 2T 3T4 4T4 t

Figure B.1: A sampled data sequence

B.4.1 Integrator

An integrator block integrates the input value and passes the actual integrator
value to the output of a system. There are different methods of integration.

A

X(KT 2)

Tq 2T 3T4 4T, t

Figure B.2: Basic integration algorithm (numerical)

B.4.2 Differentiator
B.4.3 Summation Point

B.4.4 Scope

As a scope you can include the viewer entity which we designed in the beginning.
Now you have to connect its functionality properly to use it as a scope operator.

B.4. CONTROL SYSTEM OPERATOR BLOCKS 185

X(KT 2)

Tg 2T 3T4 4T, t

Figure B.3: A trapezoid integration algorithm

A

X(KT 2)

Tgq 2T 3T4 4T, t

Figure B.4: Differentiation in the sampled data domain

Figure B.5: A sum point for block diagrams

B.4.5 Graphical Input for the given blocks

The designed blocks are now ready for a user-configurable display. The user has
to be able to select any specifications of the underlying block. These are:

e The amplification K in the differentiator and integrator block

e The signs for the inputs of the summation point

186 APPENDIX B. DEVELOPMENT EXCERCISES

B.5 A Metasystem for a control loop

A metasystem - if we recall our definition - was a superior level system which
had to invoke the appropriate member functions of the underlying entities (either
by direct call or by passing appropriate messages). For a control loop, which is
built up using the object oriented entity concept, it is further necessary to exe-
cute these functions in an appropriate manner and also provide workarounds for
algebraic loops and so on. We will focus only on the first part, as the solutions
to e.g. algebraic loops would be beyond our scope.

B.5.1 An execution structure for the control blocks

First, think of how the given sampled data-system structure could be executed.
Think of data exchange in case of a multiple input multiple output system.

B.5.2 A hard wired control loop simulator

B.5.2.1 Simple case

Put up a fixed control-system structure with the plant given in Fig. B.6. first
exchange your data by directly copying values from one to another operator block
B.5.2.2 General case

Additionally add dynamic data handling by providing the outputs of the operators
in a dynamic list. Invent a special node entity which contains a name for the
variable and the variable itself. Add in all your graphical interface entities the
possibility to see the name of the selected variable.

L L L]

PID G(2) .

Figure B.6: A sample control loop - try to make modifications to your structure
or to introduce a dynamic user interface

B.6. REALTIME ISSUES 187

B.6 Realtime issues

B.6.1 Set and reset parallel port signals

Set and reset signals of the parallel port with a realtime algorithm. Make the tim-
ing faster and check with an oscilloscope whether the rectangular output varies
or is inaccurate.

B.6.2 Data acquisition from an A /D-board

Acquire an input value from an A /D-board and write the same value to the out-
put of the A/D-board.

B.6.3 Coupling Realtime and User Interface

Show the acquired trajectory on your dynamic visualization screen. Allow the
user to specify a delay between acquisition and output and measure both, in- and
output value (to and from the A/D-D/A board) on an oscilloscope to determine
whether the timings are accurate

188 APPENDIX B. DEVELOPMENT EXCERCISES

B.7 Application Testing

B.7.1 Separate Entities

Build up the tank system simulation entity and the Petri net for the logic control,
both with an appropriate visualization. Introduce buttons for every signal which
can be pressed by the user to test the given functionality. The integration for the
tank entity does not require a realtime approach.

B.7.2 Object oriented way of combing Entities

Combine the predescribed entities and use member variables of the entities for
data transfer. The only button left for the user is now the activation signal for
Valve V3.

B.7.3 Testing with hardware-cabling

The last step is to setup the application for logic control on one computer and
on the other one the application which simulates the tank system. Both should
exchange the values of their sensor signals using serial port.

The following text was taken from the Serial-Programming Howto by

1. Port Settings
The devices /dev/ttyS* are intended to hook up terminals to your Linux box,
and are configured for this use after startup. This has to be kept in mind when
programming communication with a raw device. E.g. the ports are configured to
echo characters sent from the device back to it, which normally has to be changed
for data transmission.

All parameters can be easily configured from within a program. The configuration
is stored in a structure struct termios, which is defined in <asm/termbits.h;:

#define NCCS 19
struct termios {

tcflag_t c_iflag; /* input mode flags */
tcflag_t c_oflag; /* output mode flags */
tcflag_t c_cflag; /* control mode flags */
tcflag_t c_lflag; /* local mode flags */
cc_t c_line; /* line discipline */
cc_t c_cc[NCCS]; /* control characters */

};

This file also includes all flag definitions. The input mode flags in c_iflag handle
all input processing, which means that the characters sent from the device can
be processed before they are read with read. Similarly c_oflag handles the output
processing. c_cflag contains the settings for the port, as the baudrate, bits per

B.7. APPLICATION TESTING 189

character, stop bits, etc.. The local mode flags stored in c_lflag determine if
characters are echoed, signals are sent to your program, etc.. Finally the array
c_cc defines the control characters for end of file, stop, etc. Default values for the
control characters are defined in

<

asm/termios.h>. The flags are described in the manual page termios(3). The
structure termios contains the c_line (line discipline) element, which is not used
in POSIX compliant systems.

2. Input Concepts for Serial Devices
Here three different input concepts will be presented. The appropriate concept
has to be chosen for the intended application. Whenever possible, do not loop
reading single characters to get a complete string. When I did this, I lost char-
acters, whereas a read for the whole string did not show any errors.

(a) Canonical Input Processing

This is the normal processing mode for terminals, but can also be useful
for communicating with other dl input is processed in units of lines, which
means that a read will only return a full line of input. A line is by default
terminated by a NL (ASCII LF), an end of file, or an end of line character.
A CR (the DOS/Windows default end-of-line) will not terminate a line with
the default settings. Canonical input processing can also handle the erase,
delete word, and reprint characters, translate CR to NL, etc.

(b) Non-Canonical Input Processing
Non-Canonical Input Processing will handle a fixed amount of characters
per read, and allows for a character timer. This mode should be used if
your application will always read a fixed number of characters, or if the
connected device sends bursts of characters.

(c¢) Asynchronous Input
The two modes described above can be used in synchronous and asyn-
chronous mode. Synchronous is the default, where a read statement will
block, until the read is satisfied. In asynchronous mode the read statement
will return immediatly and send a signal to the calling program upon com-
pletion. This signal can be received by a signal handler.

(d) Waiting for Input from Multiple Sources

This is not a different input mode, but might be useful, if you are handling
multiple devices. In my application I was handling input over a TCP/IP
socket and input over a serial connection from another computer quasi-
simultaneously. The program example given below will wait for input from
two different input sources. If input from one source becomes available, it
will be processed, and the program will then wait for new input.

The approach presented below seems rather complex, but it is important to
keep in mind that Linux is a multi-processing operating system. The select

190 APPENDIX B. DEVELOPMENT EXCERCISES

system call will not load the CPU while waiting for input, whereas looping
until input becomes available would slow down other processes executing
at the same time.

The following text contains programming examples for the given port-modes to
make it easier to understand the specifications.

1. General

All examples have been derived from miniterm.c. The type ahead buffer is lim-
ited to 255 characters, just like the maximum string length for canonical input
processing (<linux/limits.h> or <posix1_lim.h>).

See the comments in the code for explanation of the use of the different input
modes. I hope that the code is understandable. The example for canonical input
is commented best, the other examples are commented only where they differ
from the example for canonical input to emphasize the differences.

The descriptions are not complete, but you are encouraged to experiment with
the examples to derive the best solution for your application.

Don’t forget to give the appropriate serial ports the right permissions (e. g.:
chmod a+rw /dev/ttyS1)!

2. Canonical Input Processing

#include $<$sys/types.h$>$
#include $<$sys/stat.h$>$
#include $<$fcntl.h$>$
#include $<$termios.h$>$
#include $<$stdio.h$>$

/* baudrate settings are defined in $<$asm/termbits.h$>$, which is
included by $<$termios.h$>$ */

#define BAUDRATE B38400

/* change this definition for the correct port */

#define MODEMDEVICE "/dev/ttyS1i"

#define _POSIX_SOURCE 1 /* POSIX compliant source */

#define FALSE O
#define TRUE 1

volatile int STOP=FALSE;
main()

{

int fd,c, res;

B.7. APPLICATION TESTING 191

struct termios oldtio,newtio;
char buf[255];

/*
Open modem device for reading and writing and not as
controlling tty because we don’t want to get killed if
linenoise sends CTRL-C.

*/

fd = open(MODEMDEVICE, O_RDWR | O_NOCTTY);

if (fd $<$0) {perror (MODEMDEVICE); exit(-1); }

/* save current serial port settings */
tcgetattr(fd,&oldtio) ;

/* clear struct for new port settings */
bzero(&newtio, sizeof (newtio));

/*
BAUDRATE: Set bps rate. You could also use
cfsetispeed and cfsetospeed.
CRTSCTS : output hardware flow control
(only used if the cable has
all necessary lines)

Cs8 : 8nl (8bit,no parity,l stopbit)

CLOCAL : local connection, no modem contol

CREAD : enable receiving characters
*/
newtio.c_cflag = BAUDRATE | CRTSCTS | CS8 | CLOCAL | CREAD;
/*

IGNPAR : ignore bytes with parity errors

ICRNL : map CR to NL (otherwise a CR input on

the other computer will not terminate input)
otherwise make device raw (no other input processing)
*/

newtio.c_iflag

IGNPAR | ICRNL;

/*
Raw output.
*/

newtio.c_oflag

0;

/*
ICANON : enable canonical input
disable all echo functionality, and don’t send signals
to calling program

*/

newtio.c_lflag = ICANON;

192 APPENDIX B. DEVELOPMENT EXCERCISES

/*
initialize all control characters
default values can be found in /usr/include/termios.h,
and are given in the comments, but we don’t need them here

*/

newtio.c_cc[VINTR] = 0; /* Ctrl-c */
newtio.c_cc[VQUIT] = 0; /* Ctrl-\ */
newtio.c_cc[VERASE] = 0; /* del x/
newtio.c_cc [VKILL] = 0; /* @ %/
newtio.c_cc [VEOF] 4; /* Ctrl-d */
newtio.c_cc[VTIME] = 0; /* inter-character
timer unused */
newtio.c_cc[VMIN] = 1; /* blocking read
until 1 character
arrives */
newtio.c_cc [VSWTC] = 0; /* °\0’ x/
newtio.c_cc[VSTART] = 0; /* Ctrl-q */
newtio.c_cc[VSTOP] = 0; /* Ctrl-s */
newtio.c_cc[VSUSP] = 0; /* Ctrl-z x/
newtio.c_cc[VEOL] 0; /* 2\0’ x/
newtio.c_cc[VREPRINT] = 0; /* Ctrl-r */
newtio.c_cc[VDISCARD] = O; /* Ctrl-u */
newtio.c_cc[VWERASE] = 0; /* Ctrl-w */
newtio.c_cc[VLNEXT] = 0; /* Ctrl-v x/
newtio.c_cc[VEOL2] = 0; /* °\0’ x/

/*
now clean the modem line and activate
the settings for the port
*/
tcflush(fd, TCIFLUSH);
tcsetattr(fd,TCSANOW, &newtio) ;

/*
terminal settings done, now handle input
In this example, inputting a ’z’ at the
beginning of a line will
exit the program.
*/
while (STOP==FALSE) {
/* loop until we have a terminating condition */

/* read blocks program execution until
a line terminating character is
input, even if more than 255 chars are input.
If the number of characters read is smaller

B.7. APPLICATION TESTING 193

than the number of chars available, subsequent
reads will return the remaining chars. res will
be set to the actual number of characters
actually read */

res = read(fd,buf,255);
/* set end of string, so we can printf */

buf [res]=0;
printf (":%s:%d\n", buf, res);
if (buf[0]==’z’) STOP=TRUE;
}
/* restore the old port settings */
tcsetattr(fd,TCSANOW,&oldtio);
}

3. Non-Canonical Input Processing

In non-canonical input processing mode, input is not assembled into lines and in-
put processing (erase, kill, delete, etc.) does not occur. Two parameters control
the behavior of this mode: c_cc[VTIME] sets the character timer, and c_cc[VMIN]
sets the minimum number of characters to receive before satisfying the read.

If MIN > 0 and TIME = 0, MIN sets the number of characters to receive before
the read is satisfied. As TIME is zero, the timer is not used.

If MIN = 0 and TIME > 0, TIME serves as a timeout value. The read will be
satisfied if a single character is read, or TIME is exceeded (t = TIME *0.1 s). If
TIME is exceeded, no character will be returned.

If MIN > 0 and TIME > 0, TIME serves as an inter-character timer. The read
will be satisfied if MIN characters are received, or the time between two characters
exceeds TIME. The timer is restarted every time a character is received and only
becomes active after the first character has been received.

If MIN = 0 and TIME = 0, read will be satisfied immediately. The number
of characters currently available, or the number of characters requested will be
returned. According to Antonino (see contributions), you could issue a fentl(fd,
F_SETFL, FNDELAY); before reading to get the same result.

By modifying newtio.c_cc[VTIME] and newtio.c_cc[VMIN] all modes described
above can be tested.

#include $<$sys/types.h$>$
#include $<$sys/stat.h$>$
#include $<$fcntl.h$>$
#include $<$termios.h$>$
#include $<$stdio.h$>$

194 APPENDIX B. DEVELOPMENT EXCERCISES

#define BAUDRATE B38400

#define MODEMDEVICE "/dev/ttyS1"

#define _POSIX_SOURCE 1 /* POSIX compliant source */
#define FALSE O

#define TRUE 1

volatile int STOP=FALSE;

main()

{
int fd,c, res;
struct termios oldtio,newtio;
char buf [255];

fd = open(MODEMDEVICE, O_RDWR | O_NOCTTY);
if (£d $<$0) {perror (MODEMDEVICE); exit(-1); }

tcgetattr(fd,&oldtio); /* save current port settings */

bzero(&newtio, sizeof (newtio));
newtio.c_cflag = BAUDRATE | CRTSCTS | CS8 | CLOCAL | CREAD;

newtio.c_iflag = IGNPAR;
newtio.c_oflag = 0;
/* set input mode (non-canonical, no echo,...) */

newtio.c_lflag = 0;

newtio.c_cc[VTIME] 0; /* inter-character
timer unused */
5; /% blocking read until

5 chars received */

newtio.c_cc[VMIN]

tcflush(fd, TCIFLUSH);
tcsetattr(fd,TCSANOW,&newtio) ;

while (STOP==FALSE) { /* loop for input */
res = read(fd,buf,255); /* returns after 5 chars
have been input */
buf [res]=0; /* so we can printf... */
printf(":%s:%d\n", buf, res);
if (buf[0]==’z’) STOP=TRUE;
}
tcsetattr (£fd,TCSANOW, &oldtio);

B.7. APPLICATION TESTING 195

4. Asynchronous Input

#include $<$termios.h$>$
#include $<$stdio.h$>$
#include $<Punistd.h$>$
#include $<$fcntl.h$>$
#include $<$sys/signal.h$>$
#include $<$sys/types.h$>$

#define BAUDRATE B38400

#define MODEMDEVICE "/dev/ttyS1"

#define _POSIX_SOURCE 1 /* POSIX compliant source */
#define FALSE O

#define TRUE 1

volatile int STOP=FALSE;

/* definition of signal handler */
void signal_handler_I0 (int status);
int wait_flag=TRUE; /* TRUE while no signal received */

main()
{
int fd,c, res;
struct termios oldtio,newtio;
struct sigaction saio; /* definition of signal action */
char buf[255];

/* open the device to be non-blocking

(read will return immediatly) */
fd = open(MODEMDEVICE, O_RDWR | O_NOCTTY | O_NONBLOCK) ;
if (fd $<$0) {perror (MODEMDEVICE); exit(-1); }

/* install the signal handler before
making the device asynchronous */

saio.sa_handler = signal_handler_IO;

saio.sa_mask = O;

saio.sa_flags = O;

saio.sa_restorer NULL;

sigaction(SIGIO,&saio,NULL);

-

/* allow the process to receive SIGIQ */

fentl(fd, F_SETOWN, getpid());

/* Make the file descriptor asynchronous
(the manual page says only O_APPEND and O_NONBLOCK,
will work with F_SETFL...) */

fcntl(fd, F_SETFL, FASYNC);

196 APPENDIX B. DEVELOPMENT EXCERCISES

tcgetattr(fd,&oldtio); /* save current port settings */

/* set new port settings for canonical input processing */
newtio.c_cflag = BAUDRATE | CRTSCTS | CS8 | CLOCAL | CREAD;
newtio.c_iflag = IGNPAR | ICRNL;

newtio.c_oflag = 0;

newtio.c_lflag = ICANON;

newtio.c_cc[VMIN]=1;

newtio.c_cc[VTIME]=0;

tcflush(£fd, TCIFLUSH);

tcsetattr(fd, TCSANOW, &newtio) ;

/* loop while waiting for input.
normally we would do something
useful here */

while (STOP==FALSE) {
printf (".\n") ;usleep(100000) ;

/* after receiving SIGIO,
wait_flag = FALSE, input is available
and can be read */

if (wait_flag==FALSE) {
res = read(fd,buf,255);
buf [res]=0;
printf(":%s:%d\n", buf, res);
if (res==1) STOP=TRUE; /* stop loop if only
a CR was input */
wait_flag = TRUE; /* wait for new input */
}
}
/* restore old port settings */
tcsetattr (fd,TCSANOW, &oldtio) ;
}

/***
* gsignal handler. sets wait_flag to FALSE *
* to indicate above loop that *
* characters have been received. *
**/

void signal_handler_IO0 (int status)

{
printf("received SIGIO signal.\n");
wait_flag = FALSE;

}

B.7. APPLICATION TESTING 197

5. Waiting for Input from Multiple Sources

This section is kept to a minimum. It is just intended to be a hint, and therefore
the example code is kept short. This will not only work with serial ports, but
with any set of file descriptors.

The select call and accompanying macros use a fd_set. This is a bit array, which
has a bit entry for every valid file descriptor number. select will accept a fd_set
with the bits set for the relevant file descriptors and returns a fd_set, in which the
bits for the file descriptors are set where input, output, or an exception occurred.
All handling of fd_set is done with the provided macros. See also the manual
page select(2).

#include $<$sys/time.h$>$
#include $<$sys/types.h$>$
#include $<$unistd.h$>$

main()

{
int fdl, £d2; /* input sources 1 and 2 */
fd_set readfs; /* file descriptor set */
int maxfd; /* maximum file desciptor used */
int loop=1; /* loop while TRUE */

/* open_input_source opens a device,
sets the port correctly, and
returns a file descriptor */

fdl = open_input_source("/dev/ttyS1"); /* COM2 */
if (£d1$<$0) exit(0);
fd2 = open_input_source("/dev/ttyS2"); /* COM3 */
if (£d2$<$0) exit(0);

/* maximum bit entry (£d) to test */
maxfd = MAX (£d1, fd2)+1;

/* loop for input */

while (loop) {
FD_SET(fd1l, &readfs); /* set testing for source 1 */
FD_SET(fd2, &readfs); /* set testing for source 2 */
/* block until input becomes available */
select (maxfd, &readfs, NULL, NULL, NULL);

if (FD_ISSET(fd1))
/* input from source 1 available */
handle_input_from_sourcel();

198 APPENDIX B. DEVELOPMENT EXCERCISES

if (FD_ISSET(£d2))
/* input from source 2 available */
handle_input_from_source2();

The given example blocks indefinitely, until input from one of the sources becomes
available. If you need to timeout on input, just replace the select call by:

int res;
struct timeval Timeout;

/* set timeout value within input loop */
Timeout.tv_usec = 0; /* milliseconds */

Timeout.tv_sec = 1; /* seconds */
res = select(maxfd, &readfs, NULL, NULL, &Timeout);
if (res==0)

/* number of file descriptors with input = O,
timeout occurred. */

This example will timeout after 1 second. If a timeout occurs, select will return
0, but beware that Timeout is decremented by the time actually waited for input
by select. If the timeout value is zero, select will return immediatly.

Appendix C

Solutions to selected Problems

C.1 A Framegrabber-Interface

In the following, only the most important pieces of code are printed.

1. Initializing the Videolnterface Entity which handles the video for Linux driver.
First, the constructor is invoked - it sets the name of the device-driver to “/dev/video”
and then starts the basis initialization of the driver by calling the member-
function baselnit().

VideoInterface::VideoInterface()

{

m_videodevice="/dev/video";
m_defaultchannelnumber=1;//VIDEO_EINGANG;
m_Image=new(QImage) ;

m_Image-$>$create(768,576,32,0, QImage: :IgnoreEndian);
baseInit();

}

2. The code for basis-initialization of the framegrabber device

int VideoInterface::baseInit()

{

//For basic configuration of the video interface
//(if live-video is needed), we have to set
//memory adresses which needs root-access

QString kv4lcall("kv4lsetup -q -1 ");
kvd4lcall+="/dev/bttv";

kv4lcall.append(" -b ");

QString sbpp;
sbpp.setNum(16); //Set number of bits/pixel

199

200 APPENDIX C. SOLUTIONS TO SELECTED PROBLEMS

kv4lcall+=sbpp;

switch (system((const char #*)kv4lcall))
{
case -1:
warning("could’nt start kv4lsetup!\n");
break;
case 0O:
break;
default:
warning ("kv4lsetup had some trouble,
trying to continue anyway.\n");
break;
}

return O;

}

Now the device-driver is set up by first opening the device

int VideoInterface: :openDevice()

{
if (-1 == (m_devv4l=::open(m_videodevice,0_RDWR)))
{
fatal(‘ ‘Error opening video device",m_videodevice,strerror(errno));
}
return O;
}

using the device-driver specific ioctl-commands, we setup the interface:

int VideoInterface::configureInterface()
{
//Query Capabilities of Framegrabber
if(-1 == ioctl(m_devv4l,VIDIOCGCAP,&m_videocap))
warning("videointerface: VIDIOC_G_CAP in ::videointerfaceif");

//0btain Frame buffer Parameters
if (-1 == ioctl(m_devv4l, VIDIOCGFBUF, &m_videobuf))
warning ("videointerface: ioctl VIDIOCGFBUF in ::videointerfaceif");

//check video-source and set correct input

m_channel .channel=m_defaultchannelnumber;

if (-1 == ioctl(m_devv4l, VIDIOCGCHAN, &m_channel))
warning("videointerface: ioctl VIDIOCGCHAN in ::videointerfaceif");

m_channel .channel=m_defaultchannelnumber;

C.1. A FRAMEGRABBER-INTERFACE 201

if (-1 == ioctl(m_devv4l, VIDIOCSCHAN, &m_channel))
warning ("videointerface: ioctl VIDIOCSCHAN in ::videointerfaceif");

//Acquire information on image
if (-1 == ioctl(m_devv4l, VIDIOCGPICT, &m_picture))
warning ("ioctl VIDIOCGPICT failed");

//Query tuner

if (m_channel.tuners$>$0)

{
if (-1 == ioctl(m_devv4l, VIDIOCGTUNER, &m_tuner))
warning("ioctl VIDIOTUNER failed");

//Calculate the size of the framebuffer
m_size=m_videobuf.height*m_videobuf.width*(24$>$$>$3);

// Alloc memory for snapshot

m_grabbermem=(char *)mmap(0,m_size,PROT_READ
| PROT_WRITE,MAP_SHARED,
m_devv4l,0);

if ((char*)-1 == m_grabbermem)
warning ("unable to allocate memory for snap shots!");

return O;

}

3. Images can be grabbed using the following member function

int VideoInterface: :Grab()

{

m_memorymap.frame=0; /* Frame (0 - n) for double buffer x*/
m_memorymap.height=576;

m_memorymap .width=768;
m_memorymap.format=VIDEO_PALETTE_RGB24;

if (-1 == ioctl(m_devv4l,VIDIOCMCAPTURE,&m_memorymap))
{
if (errno == EAGAIN)
{
warning("videointerface: Grabber chip can’t sync");
return false;
X

else

202 APPENDIX C. SOLUTIONS TO SELECTED PROBLEMS

{
fatal("videointerface: VIDIOCMCAPTURE in ::grabOne: %s",strerror(errno));
}
}

//Frame O starts at m_grabbermem.
//Wait for Frame

if (-1 == ioctl(m_devv4l,VIDIOCSYNC,&m_memorymap.frame))
warning ("waiting not possible");

//Schreibe gegrabbtes Bild in QImage
int i,j,index=0;

unsigned int *rgb;

m_Image-$>$£fill (0x00dd00) ;

for(i=0;i$<$576;i++)
for(j=0;j$<$768;j++)

{
rgb = (unsigned int *)m_Image-$>$scanline(i) + j;
*rgb = gRgb(m_grabbermem[index] ,m_grabbermem[index+1],
m_grabbermem[index+2]) ;
index+=3;
}
return O;

}

4. Finally, the videointerface is closed and all memory is freed after the video-device
has been closed

int VideoInterface::closeDevice()

{

//unmap memory mapped frame memory

if (((char*)-1) != m_grabbermem) munmap(m_grabbermem,m_size);

//close device

if (-1 == ::close(m_devv4l))

{

warning("videointerface: Error closing video device"
,m_videodevice,strerror(errno));

}

return O;

}

VideoInterface::~VideoInterface()

C.1. A FRAMEGRABBER-INTERFACE 203

closeDevice();
if (-1 == ioctl(m_devv4l, VIDIOCCAPTURE, &zero))
warning("ioctl VIDIOCCAPTURE impossible");

delete (m_Image);

204 APPENDIX C. SOLUTIONS TO SELECTED PROBLEMS

Appendix D

Sampled Data Systems

For sampled data systems, one can decide between approximation of continuous
time systems (especially for simulation purposes) or a discrete time approach. The
state space representation is immensely useful for deriving integration algorithms
in order to approximate continuous time systems’ behaviour. Both approaches
are given in the following text!.

D.1 Numerical integration algorithms

First order differential equations can be integrated using different methods. In the
following sections, we derive the explicit Euler algorithm (the easiest integration
algorithm) and also integration according to Heun. The difference is that Heun
uses two reference points in order to calculate the derivative in the (k+1)st step.
Integration according to Runge Kutta (RK) uses even more points (RK-3, RK-4,
RK-5). Many systems (like MATLAB for example) use RK-4 and for supervision
of the stepsize use RK-5.

D.1.1 Explicit Euler Integration

Assume a state space system as given below:

x(t) =A-x(t) +B-u(t) (D.1)

Required is the trajectory of x(¢). The system time is then discretized assuming
a step size h (see Fig. D.1:

%() = A-x(t) + B-u(t)],_y,, (D2)
We obtain:

1See Tuttas [16] concerning discrete integration algoritms and Pandit [11] or Foellinger [4]
comcerning sampled data control systems

205

206 APPENDIX D. SAMPLED DATA SYSTEMS

x(H)

exact value

estimated value

_,,/

Figure D.1: Euler integration method

x(k-h)=A-x(k-h)+B-u(k-h) (D.3)
Now we calculate x((k + 1) - h) using h and the derivative x(k - h) :

x((k+1)-h) =x(k-h) +h-%(k - h) (D.4)

As the derivative is based on only one point on the curve and the input, the
estimated value for x((k+1)-h) is not very accurate which can only be overcome
by the selection of a very small step size h (which increases the numerical errors
beyond a certain limit).

Now we introduce our resukt into the state equation:

x((k+1)-h)=x(k-h)+h-A-x(k-h)+h-B-u(k-h) (D.5)

We obtain for the Euler integration: x((k+1)-h)=x(k-h)+h-T-(A-x(k-h)+B-uk-

This integration algorithm can be expressed in a block diagram (see Fig. D.2)

D.1.2 Numerical Intergration using the Heun Method

The drawbacks of Euler integration can be overcome by introducing more inter-
mediate steps into the integration process. This makes it possible to increase the
step size and to obtain more accurate results. The following derivation shows

D.1. NUMERICAL INTEGRATION ALGORITHMS 207

Integrator
. N B >Or N F >O) y 71 | N
H 1 J
A K)

Figure D.2: Euler integration as a block diagram, F = h - I

the derivation of the Heun method. The extension using one more point leads
to RK-3. The procedure for the derivation is depicted in Fig. D.3. First, we
calculate the estimated value for x(h - (k+1)); this value is enhanced in the next
step - in the first step we perform an Euler integration in order to obtain the esti-
mated value x(h- (k+1)). Using this estimated value xP(h- (k+1)) we calculate
the tangent slope is calculated by averaging the slopes in the point x(h - k) (i.e.
x(h - k)) and in the estimated point x?(h - (k + 1)) (i.e. x(h-k)).
Given is a state space system as follows:
x(t) = A-x(t) +B-u(t) (D.7)

We require the trajectory x(¢). We sample the continuous trajectory using the
step size h:

X(t) = A-x(t) + B-u(t)|,_y.p (D.8)
We obtain:

%(k-h) = A-x(k-h)+B-u(k-h) (D.9)

Now use the method given in Fig. D.4 and calculate the estimated value x?((k +
1) - h) using the step size h and the derivative x(k - h) :

xP((k+1)-h)=x(k-h)+h-x(k-h) (D.10)
The derivative x?((k + 1) - h) is calculated using the state equation:

x*(k+1)-h)=A -xP(k+1)-h)+B-u((k+1)-h) (D.11)

Now we rewrite:

x((k+1)-h) = x(k - h) + g (k- h) +%P((k+ 1) - R)] (D.12)

Finally, we introduce the expressions into the original simulation equation:

208 APPENDIX D. SAMPLED DATA SYSTEMS

X(t)
O exact value

h h

. /mean slope

estimated value
2nd stey derivative]
in the estimated point
estimated value
- 1st step
t

Figure D.3: Heun integration als an extended Euler method

x((k+1)-h) = x(k-h)+ o [A-x(k-h) +Bou(k-h) (D13
+A -x"((k+1)-h)+B-u((k+1)-h)

The expression can be further expanded:

x((k+1)-h) = x(k-h)+g-[A-X(k-h)+B-u(k-h) (D.14)
+A-x(k-h)+Ah-x(k-h)+B-u((k+1)-h)]

Finally we obtain:

x((k+1)-h) = (1 oAb+ A;”2> x(k-h)+ (gB ; A’;’h2> u(kh) + UBu((k-+1)h)

D.2. DISCRETIZATION OF CONTINUOUS TIME CONTROL ALGORITHMS209

A N
Integrator
Uy Xy
- : >Or N — | =
B 2
X X
4 k+1 k
Ah o, hi 5O y 71 '
U 1 J
Ug+1 U
L B = — | =
_ A %

Figure D.4: Block diagram describing the Heun integration algorithm

D.2 Discretization of continuous time control
algorithms

In order to convert continuous time control algorithms into their discrete time

equivalents, different methods are applicable. In the following sections, we ap-

ply direct discretization using simple numerical euler integration and backward
differentiation algorithms.

D.2.1 Digital PI- Controller

The digital PI algorithm is derived outgoing from the continuous time description:
t
u(t) = Ky - zq(t) + K; - / q(t)dt (D.16)
0

The integral is approximated using the rectangular rule (Euler integration). Thus

we obtain:
k

u(k) = Ky - ra(k) + K+ D a(n) - T (D.17)

n=0

To obtain an applicable and implementable difference equation, one has to shift

210 APPENDIX D. SAMPLED DATA SYSTEMS

the whole equation :

u(k+1) = K, aq(k+ 1) + K; - Y _xq(n) - To+ za(k +1) - Ty (D.18)

n=0
The unshifted version of the difference equation is now reorganized as follows:

ulk) = Ky ra(k) = K- 3 waln) - T, (D.19)

n=0

and then inserted into the shifted equation. This yields:
uk+1) =K, x4k +1)— K, -zq(k) +u(k) + K; -24(k+1)-T, (D.20)
Sorting the variables and performing Z-transform yields:

wk+1)—ulk) = K, - (xa(k+1)—z4(k)) + K; - xq(k+1)-T,
Uz) - (z—1) = K, -Xy(2)(z—1)+ X4(2) - 2- T, - K, (D.21)

The transfer function of the controller is then given by:

U(z z
GR(Z)Z%(Z)):Kp_'—Kz;Ta

D.2.2 Digital PD Controller

The derivation of the digital PD controller is similar to the previously shown
derivation of the PI controller. The control algorithm is in the continuous time
domain given by:

u(t) = Kp - x4(t) + Kq - 24(t) (D.23)

The differentiation with respect to time is replaced by the backward difference
quotient:

(k) — za(k —1)
T,

The transfer function of the controller is then again derived using Z-transform:

ulk) = K, - va(k) + Ky - -2 (D.24)

1— 271
T,

D.2. DISCRETIZATION OF CONTINUOUS TIME CONTROL ALGORITHMS211

D.2.3 Digital PID Algorithm

In the continuous time domain, the PID control algorithm is given by:
t
() = K, - za(t) + Ka- salt) + Ki - /xd(t)dt (D.27)
0

again we approximate this differential equation using backward difference quo-
tients and Euler integration.

(k) — za(k —1)
T,

x
u(k) = Kp . l‘d(k) + Kd . d
We again shift the difference equation one step ahead:

k
l‘d(k —|— 1) — LEd(lﬁ)
= +KZ--HZU 24(k)-Ty+K;-Ty-xq(k+1)

a

(D.29)
Now the equation for u(k) is solved for the sum:
k
k) —zq(k—1
w(k) — K, - za(k) — Ky - 4F) ;fd() _ K, S aak)- T, (D.30)

n=0

the result is then introduced in the equation for u(k + 1):

wk+1) = Kp'xd(/f+1)+[(d.zd(k+172_xd(k)
xd(k) — SEd(/C — 1)

1,

+u(k) — K, - zq(k) —

Kd . + Kz . Ta . l‘d(k + 1) (D31)

und vereinfacht ergibt sich:

k + 1) — 2{,Ed(k) + .’lfd(k — 1)
T, *
u(k) + Kz . Ta . l‘d(k + 1) (D32)

wk+1) = K- (zq(k+1) — 24(k)) + Kq- Z(

212 APPENDIX D. SAMPLED DATA SYSTEMS

Z-Transform yields the transfer function:

ulk+1)—u(k) = K, (valk+1)—z4(k)) + Kq - za(k +1) — 2x4(k) + za(k — 1) i

T,
Ki . Ta : .ZEd(l{) + 1) (D33)
we obtain:
K, 1
U(z)(z—1) = K, Xy(2)-(2— 1)—!—? Xy(2) (z=2427)+ K;- T, 2- Xy(2) (D.34)
Finally we get:
U(z) Ky z—2+2z1 2
-7 _ K .X —d.x cTETt VKT, X
Gr(2) .02 p - Xa(z) + T, a?) ————+ 1 Xal?)
(D.35)

The same result can be obtained easier if a linear combination of P, D and I parts
is formed.

K 2¢—=2z+1 z
Gr(z) = K, X4(2) ?d-Xd(z) 1) + 0 Lo Xa(2)
K 1
= K, Xg(2) + =2 X(2) T+ KTy —— - Xa(2)

D.2.4 Tustin-Transformation

The Tustin transform is another method to approximate continuous time sys-
tems in the z-domain. The tustin approximation relates a trapezoid integration
algorithm with the term % in the Laplace domain:

Z% 2k +1) + 2(k)) (D.36)

The summation of trapezoid areas yield the value of the integral:

=S (el)+ a (k) + 2 k1) Fa(k) (D3

Again, equation (D.36) is shifted which yields equation (D.37). Then the un-
shifted equation is inserted into the shifted equation:

D.3. SAMPLED DATA SYSTEMS IN STATE SPACE 213

u(k)

\ -
\ yrepezo k
trapezoid area

Figure D.5: Tustin tranformation

ylk+1)=y(k)+ TE (x(k+1)+ x(k)) (D.38)

Now we apply Z-transform:

z-Y(z)=Y(z) + % (2X(2) + X(2)) (D.39)
We obtain:
Y(2) T, z+1
X(2) :G(Z):g.z—l

Nnow we compare % with our result:

1 T, z+1
s 2

— (D.41)

D.3 Sampled data systems in state space

The continuous time state equations can be expressed in the sampled data domain
by assuming a special hold device (zero order hold). This assumption holds for
most of the realizations of A/D and D/A converters in sampling or reconstruction
devices. The derivation is based on a linear continuous time time invariant state
space system. First we have to solve the state equations:

214 APPENDIX D. SAMPLED DATA SYSTEMS

x = A-x+B-u (D.42)
y = C-x+D-u (D.43)

Using a series expansion of x(t), we get:

x(t) =bg+by-t+byt? 4. (D.44)

Derivation with respect to time yields:

X(t)=b; +2-by-t+3-by-t*+--- (D.45)

These equations are inserted into the homogenious system equation:

x = A-x (D.46)
Equating coefficients yields:

2. b, A b, (D.49)

1

1
= 3 A? . bg (D.51)

1

1
= 5 A’ - bg (D.54)
(D.55)

We then obtain the matrix e-function

x(t) = <Z (Ak'!t)) - by (D.56)

f’ur t = 0 bleibt nur:

x(0) = by (D.57)

The solution for the homogenious differential equation is given by:

D.3. SAMPLED DATA SYSTEMS IN STATE SPACE

215

In order to determine the inhomogenious solution, we reformulate the equation

x = A-x+B-u
x—A-x = B-u

Now we recognize, that

d
dt
by pre multiplying of

we obtain

e x—-Ax)=e?".B.u
Which can be rewritten as:

d
dt
Integration of this equation yields:

(e’A't . x) —e¢ AT B-u

an by solving further:

e Ax(t) —x(0) = /eA'T -B - udr

0

The equation is now multiplied with e4* and we obtain the result:

(e_A't . X) = e MUA x+e A

(D.58)
(D.59)

(D.60)

(D.61)

(D.62)

(D.63)

(D.64)

(D.65)

216 APPENDIX D. SAMPLED DATA SYSTEMS

x(t) = et x(0) + / e™AU=1 B udr (D.66)
Substituting ®(t) = eA:
x(t) = ®(t) - x(0) + /@(t —7)-B-udr (D.67)

For linear time invariant systems we get further:

x(t) = Bt —1,) - x(1a) + / B(t—7) B-udr (D.68)

We assume that the system input is the output of a D/A converter with zero
order hold. Thus u(¢) is assumed to be a staircase function:

/T,
u(t) =Y u(k) (o(t—k-T,) —o(t— (k+1) - T,) (D.69)

Now we take a closer look upon the reaction of the system for one step with step
height u(k) at the point of time & - T,. Therefor we obtain:

x(t) = ®(t — k-T,) - x(k-T,) + / &(t—7)-B-u(k)dr (D.70)

kT,
Using the fact, that u(k) is not a function of ¢, one can take it out of the integral

x(t) = ®(t — k-T,) - x(k - T,) + / &(t—7)-B-u(k)dr (D.71)

k-Tq

First we calculate the integral

D.3. SAMPLED DATA SYSTEMS IN STATE SPACE

kT,

substituting

0 = t—r

de

-~ 9

dr

dd = —dr
yields:

t o(t)

/{)(t—T)-B-u(k)dT:— / ®(0)- B - ulk)do

k‘Ta e(kTa)

Exchanging the limits changes the sign:

o(t) 0(k-Ts)
- / B(0)- B - u(k)dl / B(0)- B - u(k)dd
0(k-Ts) o(t)

Now we introduce a Matrix H(?):

t

H(1) = /@(9) " Bdf

Integration yields:
-1 _A. t
H() = [A 7M. B,
This gives:

H(t)=A"'[¢*"-1]-B

Inserting this result into the integrated state equation, we get:

x(t) = ®(t— k- T,) - x(k-T,) + H(t — k- T,) - u(k)dr

In order to find out the response for a staircase function, we sample x(¢):

217

(D.72)

(D.73)

(D.74)
(D.75)

(D.76)

(D.77)

(D.78)

(D.79)

(D.80)

(D.81)

XDy, = @t — k- Tz, - x(k - Tp) + H(t — k - T,) ez, - u(k)dr (D.82)

using this, we obtain:

218 APPENDIX D. SAMPLED DATA SYSTEMS

x(v-T)) = ®((v — k) - To) - x(k - T,) + H((v — k) - T) - u(k) (D.83)

The system’s answer for the staircase input is then obtained by:

x((v+1)To) = [@(((v +1) = k) - To) - x(k - To) o, HH((+1) = k) - To) - u(k)],._,
(D.84)
This yields:
x(v+1)-T,) = ®(T,) -x(v) + H(T,) - u(v) (D.85)

Finally, we obtain the state space representation of the sampled data system:

x(k+1) = ®(Ta) -x(k)+H(T,) - u(k) (D.86)
v(k) = C-x(k)+D-u(k) (D.87)

Appendix E

Case Study: a development
environment for image processing
applications

In image processing we deal with a special signal processing setup, beginning with
the image acquisition using e.g. a radiation sensor in a computer tomograph or
a CCD sensor in a matrix camera for optical inspection. The next step is the
denoising, the so called signal restoration which removes noise and unwanted
channel distortion from the signal.

The signal is then segmented, analyzed and from the performed analysis, we can
draw conclusions - e.g. in quality control whether a mechanical part is in the
given tolerance. The whole process is depicted in Fig. E.1.

Image Preprocessing Image _
Source ™ Denoising | Analysis >| Conclusion
(medical equipment,
CCD-camera, etc.)
+ Action

Figure E.1: The image processing pipeline

The image processing pipeline provides at the same time very specific and also
very different operators. This makes it necessary to introduce a certain structure
and also to be as open as possible in order to provide a platform for a wide range
of operators. An intuitive user interface for configuration of the operators and
their interconnection as given in Fig. E.2 has to be provided.

Although the complexity of the problem is quite higher than in our hard wired

219

220 APPENDIX E. CASE STUDY

Anzeige des Pipelineinhalts Auswahl der Operationen
B Kt cE_
7 File Help
‘B H o]
Pipeline DataBase
Sources | Sinks | Ciperatars Filters Transforms
torph |Qlassiﬂcat0rs |

. @l
|
=
w
o
o
ik

| RGEBto HsI [*]
oy
Snake - Balloon [*]
—— Gradient (Difference)
(=]
= Sieve
[|
i
Caolor Screen

7
V

Starten und Stoppen Operator aus Pipeline
der Ausfihrung entfernen

Figure E.2: The dynamic user interface for the application

control loop simulator - which is due to fully dynamic outputs - we find the
same underlying structure. A basic operator as given in Fig. E.3 with a basic
functionality is provided from which all other operators are derived.

The meta system is also similar to the one used in the control loop simulator -
the dynamic list structure.

221

COperator

Initialize)

Cleanup()

Operation()

ShowParamDialog()

CObjectList:OutputVars

Data

Figure E.3: Object oriented entity diagram of the basic operator

APPENDIX E. CASE STUDY

222
CObjectList
CNode:Nodel CNode:Node2 CNode:Node3 CNode:Node4
—1 > S .
L J>C Jac g =
Y Y Y Y
CFileSource: CRGBScreen: CSobel: CRGBScreen.
Sourcel Screenl Sobel Operl Screen2
[1] [] I | | |
[] [] I | | |

Figure E.4: Object oriented entity diagram of the meta system

Bibliography

[

2]

3]

[4]

[5]

[6]

7]
8]
[9]
[10]

[11]
[12]
[13]
[14]

Helmut Balzert. Handbuch der Softwaretechnik, volume 1. Spektrum Akad.
Verlag, Heidelberg, Germany, 1999.

Helmut Balzert. Handbuch der Softwaretechnik, volume 2. Spektrum Akad.
Verlag, Heidelberg, Germany, 1999.

Helmut Balzert. Lehrbuch Grundlagen der Informatik, volume 2. Spektrum
Akad. Verlag, Berlin, 1999.

Otto Foellinger. Lineare Abtastsysteme. Oldenbourg Verlag, Munich, Ger-
many, 5th edition, 1993.

Heiko Hengen. Object oriented system analysis and synthesis for digital
image processing systems, 1997. Studienarbeit.

Heiko Hengen and Andreas Arnold. Verfahren der digitalen bildverarbeitung
und deren einsatz in der praxis, 1998. Technical Report.

Lothar Litz. Digitale prozess-steuerung, 1998. Lecture Notes.
Lothar Litz. Modellbildung und identifikation, 1998. Lecture Notes.
Lothar Litz. Process automation, 1999. Lecture Notes.

Alan V. Oppenheim and Ronald W. Schafer. Zeitdiskrete Signalverarbeitunyg.
Oldenbourg, Munich, Germany, 3rd edition, 1999.

Madhukar Pandit. Abtastregelung, 1996. Lecture Notes.
Madhukar Pandit. Control systems i, 2000. Lecture Notes.
Madhukar Pandit. System theory, 2000. Lecture Notes.

Eckehard Schnieder, editor. Petrinetze in der Automatisierungstechnik. Old-
enbourg Verlag, Miinchen, Wien, 1992.

Samuel D. Stearns and Don R. Hush. Digitale Verarbeitung analoger Signale.
Oldenbourg, Munich, Germany, 7th edition, 1999.

Christian Tuttas. Analoge und digitale simulation, 1998. Lecture Notes.

223

224 BIBLIOGRAPHY

[17] Siegfried Wendt. Grundlagen der Informationstechnik. Springer Verlag,
Berlin, 1st edition, 1990.

